RTL88x2BU-Linux-Driver/core/rtw_wlan_util.c
2020-08-02 05:12:24 -04:00

5026 lines
129 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTW_WLAN_UTIL_C_
#include <drv_types.h>
#include <hal_data.h>
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
#include <linux/inetdevice.h>
#define ETH_TYPE_OFFSET 12
#define PROTOCOL_OFFSET 23
#define IP_OFFSET 30
#define IPv6_OFFSET 38
#define IPv6_PROTOCOL_OFFSET 20
#endif
unsigned char ARTHEROS_OUI1[] = {0x00, 0x03, 0x7f};
unsigned char ARTHEROS_OUI2[] = {0x00, 0x13, 0x74};
unsigned char BROADCOM_OUI1[] = {0x00, 0x10, 0x18};
unsigned char BROADCOM_OUI2[] = {0x00, 0x0a, 0xf7};
unsigned char BROADCOM_OUI3[] = {0x00, 0x05, 0xb5};
unsigned char CISCO_OUI[] = {0x00, 0x40, 0x96};
unsigned char MARVELL_OUI[] = {0x00, 0x50, 0x43};
unsigned char RALINK_OUI[] = {0x00, 0x0c, 0x43};
unsigned char REALTEK_OUI[] = {0x00, 0xe0, 0x4c};
unsigned char AIRGOCAP_OUI[] = {0x00, 0x0a, 0xf5};
unsigned char REALTEK_96B_IE[] = {0x00, 0xe0, 0x4c, 0x02, 0x01, 0x20};
extern unsigned char RTW_WPA_OUI[];
extern unsigned char WPA_TKIP_CIPHER[4];
extern unsigned char RSN_TKIP_CIPHER[4];
#define R2T_PHY_DELAY (0)
/* #define WAIT_FOR_BCN_TO_MIN (3000) */
#define WAIT_FOR_BCN_TO_MIN (6000)
#define WAIT_FOR_BCN_TO_MAX (20000)
static u8 rtw_basic_rate_cck[4] = {
IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK
};
static u8 rtw_basic_rate_ofdm[3] = {
IEEE80211_OFDM_RATE_6MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_OFDM_RATE_24MB | IEEE80211_BASIC_RATE_MASK
};
static u8 rtw_basic_rate_mix[7] = {
IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_OFDM_RATE_6MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_OFDM_RATE_24MB | IEEE80211_BASIC_RATE_MASK
};
extern u8 WIFI_CCKRATES[];
bool rtw_is_cck_rate(u8 rate)
{
int i;
for (i = 0; i < 4; i++)
if ((WIFI_CCKRATES[i] & 0x7F) == (rate & 0x7F))
return 1;
return 0;
}
extern u8 WIFI_OFDMRATES[];
bool rtw_is_ofdm_rate(u8 rate)
{
int i;
for (i = 0; i < 8; i++)
if ((WIFI_OFDMRATES[i] & 0x7F) == (rate & 0x7F))
return 1;
return 0;
}
/* test if rate is defined in rtw_basic_rate_cck */
bool rtw_is_basic_rate_cck(u8 rate)
{
int i;
for (i = 0; i < 4; i++)
if ((rtw_basic_rate_cck[i] & 0x7F) == (rate & 0x7F))
return 1;
return 0;
}
/* test if rate is defined in rtw_basic_rate_ofdm */
bool rtw_is_basic_rate_ofdm(u8 rate)
{
int i;
for (i = 0; i < 3; i++)
if ((rtw_basic_rate_ofdm[i] & 0x7F) == (rate & 0x7F))
return 1;
return 0;
}
/* test if rate is defined in rtw_basic_rate_mix */
bool rtw_is_basic_rate_mix(u8 rate)
{
int i;
for (i = 0; i < 7; i++)
if ((rtw_basic_rate_mix[i] & 0x7F) == (rate & 0x7F))
return 1;
return 0;
}
#ifdef CONFIG_BCN_CNT_CONFIRM_HDL
int new_bcn_max = 3;
#endif
int cckrates_included(unsigned char *rate, int ratelen)
{
int i;
for (i = 0; i < ratelen; i++) {
if ((((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) ||
(((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22))
return _TRUE;
}
return _FALSE;
}
int cckratesonly_included(unsigned char *rate, int ratelen)
{
int i;
for (i = 0; i < ratelen; i++) {
if ((((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) &&
(((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22))
return _FALSE;
}
return _TRUE;
}
s8 rtw_get_sta_rx_nss(_adapter *adapter, struct sta_info *psta)
{
s8 nss = 1;
if (!psta)
return nss;
nss = GET_HAL_RX_NSS(adapter);
#ifdef CONFIG_80211N_HT
#ifdef CONFIG_80211AC_VHT
if (psta->vhtpriv.vht_option)
nss = rtw_min(nss, rtw_vht_mcsmap_to_nss(psta->vhtpriv.vht_mcs_map));
else
#endif /* CONFIG_80211AC_VHT */
if (psta->htpriv.ht_option)
nss = rtw_min(nss, rtw_ht_mcsset_to_nss(psta->htpriv.ht_cap.supp_mcs_set));
#endif /*CONFIG_80211N_HT*/
RTW_INFO("%s: %d ss\n", __func__, nss);
return nss;
}
s8 rtw_get_sta_tx_nss(_adapter *adapter, struct sta_info *psta)
{
s8 nss = 1;
if (!psta)
return nss;
nss = GET_HAL_TX_NSS(adapter);
#ifdef CONFIG_80211N_HT
#ifdef CONFIG_80211AC_VHT
if (psta->vhtpriv.vht_option)
nss = rtw_min(nss, rtw_vht_mcsmap_to_nss(psta->vhtpriv.vht_mcs_map));
else
#endif /* CONFIG_80211AC_VHT */
if (psta->htpriv.ht_option)
nss = rtw_min(nss, rtw_ht_mcsset_to_nss(psta->htpriv.ht_cap.supp_mcs_set));
#endif /*CONFIG_80211N_HT*/
RTW_INFO("%s: %d SS\n", __func__, nss);
return nss;
}
u8 judge_network_type(_adapter *padapter, unsigned char *rate, int ratelen)
{
u8 network_type = 0;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pmlmeext->cur_channel > 14) {
if (pmlmeinfo->VHT_enable)
network_type = WIRELESS_11AC;
else if (pmlmeinfo->HT_enable)
network_type = WIRELESS_11_5N;
network_type |= WIRELESS_11A;
} else {
if (pmlmeinfo->HT_enable)
network_type = WIRELESS_11_24N;
if ((cckratesonly_included(rate, ratelen)) == _TRUE)
network_type |= WIRELESS_11B;
else if ((cckrates_included(rate, ratelen)) == _TRUE)
network_type |= WIRELESS_11BG;
else
network_type |= WIRELESS_11G;
}
return network_type;
}
unsigned char ratetbl_val_2wifirate(unsigned char rate);
unsigned char ratetbl_val_2wifirate(unsigned char rate)
{
unsigned char val = 0;
switch (rate & 0x7f) {
case 0:
val = IEEE80211_CCK_RATE_1MB;
break;
case 1:
val = IEEE80211_CCK_RATE_2MB;
break;
case 2:
val = IEEE80211_CCK_RATE_5MB;
break;
case 3:
val = IEEE80211_CCK_RATE_11MB;
break;
case 4:
val = IEEE80211_OFDM_RATE_6MB;
break;
case 5:
val = IEEE80211_OFDM_RATE_9MB;
break;
case 6:
val = IEEE80211_OFDM_RATE_12MB;
break;
case 7:
val = IEEE80211_OFDM_RATE_18MB;
break;
case 8:
val = IEEE80211_OFDM_RATE_24MB;
break;
case 9:
val = IEEE80211_OFDM_RATE_36MB;
break;
case 10:
val = IEEE80211_OFDM_RATE_48MB;
break;
case 11:
val = IEEE80211_OFDM_RATE_54MB;
break;
}
return val;
}
int is_basicrate(_adapter *padapter, unsigned char rate);
int is_basicrate(_adapter *padapter, unsigned char rate)
{
int i;
unsigned char val;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
for (i = 0; i < NumRates; i++) {
val = pmlmeext->basicrate[i];
if ((val != 0xff) && (val != 0xfe)) {
if (rate == ratetbl_val_2wifirate(val))
return _TRUE;
}
}
return _FALSE;
}
unsigned int ratetbl2rateset(_adapter *padapter, unsigned char *rateset);
unsigned int ratetbl2rateset(_adapter *padapter, unsigned char *rateset)
{
int i;
unsigned char rate;
unsigned int len = 0;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
for (i = 0; i < NumRates; i++) {
rate = pmlmeext->datarate[i];
if (rtw_get_oper_ch(padapter) > 14 && rate < _6M_RATE_) /*5G no support CCK rate*/
continue;
switch (rate) {
case 0xff:
return len;
case 0xfe:
continue;
default:
rate = ratetbl_val_2wifirate(rate);
if (is_basicrate(padapter, rate) == _TRUE)
rate |= IEEE80211_BASIC_RATE_MASK;
rateset[len] = rate;
len++;
break;
}
}
return len;
}
void get_rate_set(_adapter *padapter, unsigned char *pbssrate, int *bssrate_len)
{
unsigned char supportedrates[NumRates];
_rtw_memset(supportedrates, 0, NumRates);
*bssrate_len = ratetbl2rateset(padapter, supportedrates);
_rtw_memcpy(pbssrate, supportedrates, *bssrate_len);
}
void set_mcs_rate_by_mask(u8 *mcs_set, u32 mask)
{
u8 mcs_rate_1r = (u8)(mask & 0xff);
u8 mcs_rate_2r = (u8)((mask >> 8) & 0xff);
u8 mcs_rate_3r = (u8)((mask >> 16) & 0xff);
u8 mcs_rate_4r = (u8)((mask >> 24) & 0xff);
mcs_set[0] &= mcs_rate_1r;
mcs_set[1] &= mcs_rate_2r;
mcs_set[2] &= mcs_rate_3r;
mcs_set[3] &= mcs_rate_4r;
}
void UpdateBrateTbl(
PADAPTER Adapter,
u8 *mBratesOS
)
{
u8 i;
u8 rate;
/* 1M, 2M, 5.5M, 11M, 6M, 12M, 24M are mandatory. */
for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) {
rate = mBratesOS[i] & 0x7f;
switch (rate) {
case IEEE80211_CCK_RATE_1MB:
case IEEE80211_CCK_RATE_2MB:
case IEEE80211_CCK_RATE_5MB:
case IEEE80211_CCK_RATE_11MB:
case IEEE80211_OFDM_RATE_6MB:
case IEEE80211_OFDM_RATE_12MB:
case IEEE80211_OFDM_RATE_24MB:
mBratesOS[i] |= IEEE80211_BASIC_RATE_MASK;
break;
}
}
}
void UpdateBrateTblForSoftAP(u8 *bssrateset, u32 bssratelen)
{
u8 i;
u8 rate;
for (i = 0; i < bssratelen; i++) {
rate = bssrateset[i] & 0x7f;
switch (rate) {
case IEEE80211_CCK_RATE_1MB:
case IEEE80211_CCK_RATE_2MB:
case IEEE80211_CCK_RATE_5MB:
case IEEE80211_CCK_RATE_11MB:
bssrateset[i] |= IEEE80211_BASIC_RATE_MASK;
break;
}
}
}
void Set_MSR(_adapter *padapter, u8 type)
{
rtw_hal_set_hwreg(padapter, HW_VAR_MEDIA_STATUS, (u8 *)(&type));
}
inline u8 rtw_get_oper_ch(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->oper_channel;
}
inline void rtw_set_oper_ch(_adapter *adapter, u8 ch)
{
#ifdef DBG_CH_SWITCH
const int len = 128;
char msg[128] = {0};
int cnt = 0;
int i = 0;
#endif /* DBG_CH_SWITCH */
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
if (dvobj->oper_channel != ch) {
dvobj->on_oper_ch_time = rtw_get_current_time();
#ifdef DBG_CH_SWITCH
cnt += snprintf(msg + cnt, len - cnt, "switch to ch %3u", ch);
for (i = 0; i < dvobj->iface_nums; i++) {
_adapter *iface = dvobj->padapters[i];
cnt += snprintf(msg + cnt, len - cnt, " ["ADPT_FMT":", ADPT_ARG(iface));
if (iface->mlmeextpriv.cur_channel == ch)
cnt += snprintf(msg + cnt, len - cnt, "C");
else
cnt += snprintf(msg + cnt, len - cnt, "_");
if (iface->wdinfo.listen_channel == ch && !rtw_p2p_chk_state(&iface->wdinfo, P2P_STATE_NONE))
cnt += snprintf(msg + cnt, len - cnt, "L");
else
cnt += snprintf(msg + cnt, len - cnt, "_");
cnt += snprintf(msg + cnt, len - cnt, "]");
}
RTW_INFO(FUNC_ADPT_FMT" %s\n", FUNC_ADPT_ARG(adapter), msg);
#endif /* DBG_CH_SWITCH */
}
dvobj->oper_channel = ch;
}
inline u8 rtw_get_oper_bw(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->oper_bwmode;
}
inline void rtw_set_oper_bw(_adapter *adapter, u8 bw)
{
adapter_to_dvobj(adapter)->oper_bwmode = bw;
}
inline u8 rtw_get_oper_choffset(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->oper_ch_offset;
}
inline void rtw_set_oper_choffset(_adapter *adapter, u8 offset)
{
adapter_to_dvobj(adapter)->oper_ch_offset = offset;
}
u8 rtw_get_offset_by_chbw(u8 ch, u8 bw, u8 *r_offset)
{
u8 valid = 1;
u8 offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
if (bw == CHANNEL_WIDTH_20)
goto exit;
if (bw >= CHANNEL_WIDTH_80 && ch <= 14) {
valid = 0;
goto exit;
}
if (ch >= 1 && ch <= 4)
offset = HAL_PRIME_CHNL_OFFSET_LOWER;
else if (ch >= 5 && ch <= 9) {
if (*r_offset == HAL_PRIME_CHNL_OFFSET_LOWER || *r_offset == HAL_PRIME_CHNL_OFFSET_UPPER)
offset = *r_offset; /* both lower and upper is valid, obey input value */
else
offset = HAL_PRIME_CHNL_OFFSET_UPPER; /* default use upper */
} else if (ch >= 10 && ch <= 13)
offset = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ch == 14) {
valid = 0; /* ch14 doesn't support 40MHz bandwidth */
goto exit;
} else if (ch >= 36 && ch <= 177) {
switch (ch) {
case 36:
case 44:
case 52:
case 60:
case 100:
case 108:
case 116:
case 124:
case 132:
case 140:
case 149:
case 157:
case 165:
case 173:
offset = HAL_PRIME_CHNL_OFFSET_LOWER;
break;
case 40:
case 48:
case 56:
case 64:
case 104:
case 112:
case 120:
case 128:
case 136:
case 144:
case 153:
case 161:
case 169:
case 177:
offset = HAL_PRIME_CHNL_OFFSET_UPPER;
break;
default:
valid = 0;
break;
}
} else
valid = 0;
exit:
if (valid && r_offset)
*r_offset = offset;
return valid;
}
u8 rtw_get_center_ch(u8 channel, u8 chnl_bw, u8 chnl_offset)
{
u8 center_ch = channel;
if (chnl_bw == CHANNEL_WIDTH_80) {
if (channel == 36 || channel == 40 || channel == 44 || channel == 48)
center_ch = 42;
else if (channel == 52 || channel == 56 || channel == 60 || channel == 64)
center_ch = 58;
else if (channel == 100 || channel == 104 || channel == 108 || channel == 112)
center_ch = 106;
else if (channel == 116 || channel == 120 || channel == 124 || channel == 128)
center_ch = 122;
else if (channel == 132 || channel == 136 || channel == 140 || channel == 144)
center_ch = 138;
else if (channel == 149 || channel == 153 || channel == 157 || channel == 161)
center_ch = 155;
else if (channel == 165 || channel == 169 || channel == 173 || channel == 177)
center_ch = 171;
else if (channel <= 14)
center_ch = 7;
} else if (chnl_bw == CHANNEL_WIDTH_40) {
if (chnl_offset == HAL_PRIME_CHNL_OFFSET_LOWER)
center_ch = channel + 2;
else
center_ch = channel - 2;
} else if (chnl_bw == CHANNEL_WIDTH_20)
center_ch = channel;
else
rtw_warn_on(1);
return center_ch;
}
inline systime rtw_get_on_oper_ch_time(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->on_oper_ch_time;
}
inline systime rtw_get_on_cur_ch_time(_adapter *adapter)
{
if (adapter->mlmeextpriv.cur_channel == adapter_to_dvobj(adapter)->oper_channel)
return adapter_to_dvobj(adapter)->on_oper_ch_time;
else
return 0;
}
void set_channel_bwmode(_adapter *padapter, unsigned char channel, unsigned char channel_offset, unsigned short bwmode)
{
u8 center_ch, chnl_offset80 = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#if (defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)) || defined(CONFIG_MCC_MODE)
u8 iqk_info_backup = _FALSE;
#endif
if (padapter->bNotifyChannelChange)
RTW_INFO("[%s] ch = %d, offset = %d, bwmode = %d\n", __FUNCTION__, channel, channel_offset, bwmode);
center_ch = rtw_get_center_ch(channel, bwmode, channel_offset);
if (bwmode == CHANNEL_WIDTH_80) {
if (center_ch > channel)
chnl_offset80 = HAL_PRIME_CHNL_OFFSET_LOWER;
else if (center_ch < channel)
chnl_offset80 = HAL_PRIME_CHNL_OFFSET_UPPER;
else
chnl_offset80 = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
}
_enter_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL);
#ifdef CONFIG_MCC_MODE
if (MCC_EN(padapter)) {
/* driver doesn't set channel setting reg under MCC */
if (rtw_hal_check_mcc_status(padapter, MCC_STATUS_DOING_MCC))
RTW_INFO("Warning: Do not set channel setting reg MCC mode\n");
}
#endif
#ifdef CONFIG_DFS_MASTER
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
bool ori_overlap_radar_detect_ch = rtw_rfctl_overlap_radar_detect_ch(rfctl);
bool new_overlap_radar_detect_ch = _rtw_rfctl_overlap_radar_detect_ch(rfctl, channel, bwmode, channel_offset);
if (new_overlap_radar_detect_ch && IS_CH_WAITING(rfctl)) {
u8 pause = 0xFF;
rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause);
}
#endif /* CONFIG_DFS_MASTER */
/* set Channel */
/* saved channel/bw info */
rtw_set_oper_ch(padapter, channel);
rtw_set_oper_bw(padapter, bwmode);
rtw_set_oper_choffset(padapter, channel_offset);
#if (defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)) || defined(CONFIG_MCC_MODE)
/* To check if we need to backup iqk info after switch chnl & bw */
{
u8 take_care_iqk, do_iqk;
rtw_hal_get_hwreg(padapter, HW_VAR_CH_SW_NEED_TO_TAKE_CARE_IQK_INFO, &take_care_iqk);
rtw_hal_get_hwreg(padapter, HW_VAR_DO_IQK, &do_iqk);
if ((take_care_iqk == _TRUE) && (do_iqk == _TRUE))
iqk_info_backup = _TRUE;
}
#endif
rtw_hal_set_chnl_bw(padapter, center_ch, bwmode, channel_offset, chnl_offset80); /* set center channel */
#if (defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)) || defined(CONFIG_MCC_MODE)
if (iqk_info_backup == _TRUE)
rtw_hal_ch_sw_iqk_info_backup(padapter);
#endif
#ifdef CONFIG_DFS_MASTER
if (new_overlap_radar_detect_ch)
rtw_odm_radar_detect_enable(padapter);
else if (ori_overlap_radar_detect_ch) {
u8 pause = 0x00;
rtw_odm_radar_detect_disable(padapter);
rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause);
}
}
#endif /* CONFIG_DFS_MASTER */
_exit_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL);
}
__inline u8 *get_my_bssid(WLAN_BSSID_EX *pnetwork)
{
return pnetwork->MacAddress;
}
u16 get_beacon_interval(WLAN_BSSID_EX *bss)
{
unsigned short val;
_rtw_memcpy((unsigned char *)&val, rtw_get_beacon_interval_from_ie(bss->IEs), 2);
return le16_to_cpu(val);
}
int is_client_associated_to_ap(_adapter *padapter)
{
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
if (!padapter)
return _FAIL;
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &(pmlmeext->mlmext_info);
if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state & 0x03) == WIFI_FW_STATION_STATE))
return _TRUE;
else
return _FAIL;
}
int is_client_associated_to_ibss(_adapter *padapter)
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE))
return _TRUE;
else
return _FAIL;
}
int is_IBSS_empty(_adapter *padapter)
{
int i;
struct macid_ctl_t *macid_ctl = &padapter->dvobj->macid_ctl;
for (i = 0; i < macid_ctl->num; i++) {
if (!rtw_macid_is_used(macid_ctl, i))
continue;
if (!rtw_macid_is_iface_specific(macid_ctl, i, padapter))
continue;
if (!GET_H2CCMD_MSRRPT_PARM_OPMODE(&macid_ctl->h2c_msr[i]))
continue;
if (GET_H2CCMD_MSRRPT_PARM_ROLE(&macid_ctl->h2c_msr[i]) == H2C_MSR_ROLE_ADHOC)
return _FAIL;
}
return _TRUE;
}
unsigned int decide_wait_for_beacon_timeout(unsigned int bcn_interval)
{
if ((bcn_interval << 2) < WAIT_FOR_BCN_TO_MIN)
return WAIT_FOR_BCN_TO_MIN;
else if ((bcn_interval << 2) > WAIT_FOR_BCN_TO_MAX)
return WAIT_FOR_BCN_TO_MAX;
else
return bcn_interval << 2;
}
void invalidate_cam_all(_adapter *padapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
u8 val8 = 0;
rtw_hal_set_hwreg(padapter, HW_VAR_CAM_INVALID_ALL, &val8);
_enter_critical_bh(&cam_ctl->lock, &irqL);
rtw_sec_cam_map_clr_all(&cam_ctl->used);
_rtw_memset(dvobj->cam_cache, 0, sizeof(struct sec_cam_ent) * SEC_CAM_ENT_NUM_SW_LIMIT);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
void _clear_cam_entry(_adapter *padapter, u8 entry)
{
unsigned char null_sta[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char null_key[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
rtw_sec_write_cam_ent(padapter, entry, 0, null_sta, null_key);
}
inline void write_cam(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key)
{
#ifdef CONFIG_WRITE_CACHE_ONLY
write_cam_cache(adapter, id , ctrl, mac, key);
#else
rtw_sec_write_cam_ent(adapter, id, ctrl, mac, key);
write_cam_cache(adapter, id , ctrl, mac, key);
#endif
}
inline void clear_cam_entry(_adapter *adapter, u8 id)
{
_clear_cam_entry(adapter, id);
clear_cam_cache(adapter, id);
}
inline void write_cam_from_cache(_adapter *adapter, u8 id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
struct sec_cam_ent cache;
_enter_critical_bh(&cam_ctl->lock, &irqL);
_rtw_memcpy(&cache, &dvobj->cam_cache[id], sizeof(struct sec_cam_ent));
_exit_critical_bh(&cam_ctl->lock, &irqL);
rtw_sec_write_cam_ent(adapter, id, cache.ctrl, cache.mac, cache.key);
}
void write_cam_cache(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
dvobj->cam_cache[id].ctrl = ctrl;
_rtw_memcpy(dvobj->cam_cache[id].mac, mac, ETH_ALEN);
_rtw_memcpy(dvobj->cam_cache[id].key, key, 16);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
void clear_cam_cache(_adapter *adapter, u8 id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
_rtw_memset(&(dvobj->cam_cache[id]), 0, sizeof(struct sec_cam_ent));
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
inline bool _rtw_camctl_chk_cap(_adapter *adapter, u8 cap)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
if (cam_ctl->sec_cap & cap)
return _TRUE;
return _FALSE;
}
inline void _rtw_camctl_set_flags(_adapter *adapter, u32 flags)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
cam_ctl->flags |= flags;
}
inline void rtw_camctl_set_flags(_adapter *adapter, u32 flags)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
_rtw_camctl_set_flags(adapter, flags);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
inline void _rtw_camctl_clr_flags(_adapter *adapter, u32 flags)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
cam_ctl->flags &= ~flags;
}
inline void rtw_camctl_clr_flags(_adapter *adapter, u32 flags)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
_rtw_camctl_clr_flags(adapter, flags);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
inline bool _rtw_camctl_chk_flags(_adapter *adapter, u32 flags)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
if (cam_ctl->flags & flags)
return _TRUE;
return _FALSE;
}
void dump_sec_cam_map(void *sel, struct sec_cam_bmp *map, u8 max_num)
{
RTW_PRINT_SEL(sel, "0x%08x\n", map->m0);
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
if (max_num && max_num > 32)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m1);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
if (max_num && max_num > 64)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m2);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
if (max_num && max_num > 96)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m3);
#endif
}
inline bool rtw_sec_camid_is_set(struct sec_cam_bmp *map, u8 id)
{
if (id < 32)
return map->m0 & BIT(id);
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
else if (id < 64)
return map->m1 & BIT(id - 32);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
else if (id < 96)
return map->m2 & BIT(id - 64);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
else if (id < 128)
return map->m3 & BIT(id - 96);
#endif
else
rtw_warn_on(1);
return 0;
}
inline void rtw_sec_cam_map_set(struct sec_cam_bmp *map, u8 id)
{
if (id < 32)
map->m0 |= BIT(id);
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
else if (id < 64)
map->m1 |= BIT(id - 32);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
else if (id < 96)
map->m2 |= BIT(id - 64);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
else if (id < 128)
map->m3 |= BIT(id - 96);
#endif
else
rtw_warn_on(1);
}
inline void rtw_sec_cam_map_clr(struct sec_cam_bmp *map, u8 id)
{
if (id < 32)
map->m0 &= ~BIT(id);
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
else if (id < 64)
map->m1 &= ~BIT(id - 32);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
else if (id < 96)
map->m2 &= ~BIT(id - 64);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
else if (id < 128)
map->m3 &= ~BIT(id - 96);
#endif
else
rtw_warn_on(1);
}
inline void rtw_sec_cam_map_clr_all(struct sec_cam_bmp *map)
{
map->m0 = 0;
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
map->m1 = 0;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
map->m2 = 0;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
map->m3 = 0;
#endif
}
inline bool rtw_sec_camid_is_drv_forbid(struct cam_ctl_t *cam_ctl, u8 id)
{
struct sec_cam_bmp forbid_map;
forbid_map.m0 = 0x00000ff0;
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
forbid_map.m1 = 0x00000000;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
forbid_map.m2 = 0x00000000;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
forbid_map.m3 = 0x00000000;
#endif
if (id < 32)
return forbid_map.m0 & BIT(id);
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
else if (id < 64)
return forbid_map.m1 & BIT(id - 32);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
else if (id < 96)
return forbid_map.m2 & BIT(id - 64);
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
else if (id < 128)
return forbid_map.m3 & BIT(id - 96);
#endif
else
rtw_warn_on(1);
return 1;
}
bool _rtw_sec_camid_is_used(struct cam_ctl_t *cam_ctl, u8 id)
{
bool ret = _FALSE;
if (id >= cam_ctl->num) {
rtw_warn_on(1);
goto exit;
}
#if 0 /* for testing */
if (rtw_sec_camid_is_drv_forbid(cam_ctl, id)) {
ret = _TRUE;
goto exit;
}
#endif
ret = rtw_sec_camid_is_set(&cam_ctl->used, id);
exit:
return ret;
}
inline bool rtw_sec_camid_is_used(struct cam_ctl_t *cam_ctl, u8 id)
{
_irqL irqL;
bool ret;
_enter_critical_bh(&cam_ctl->lock, &irqL);
ret = _rtw_sec_camid_is_used(cam_ctl, id);
_exit_critical_bh(&cam_ctl->lock, &irqL);
return ret;
}
u8 rtw_get_sec_camid(_adapter *adapter, u8 max_bk_key_num, u8 *sec_key_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
int i;
_irqL irqL;
u8 sec_cam_num = 0;
_enter_critical_bh(&cam_ctl->lock, &irqL);
for (i = 0; i < cam_ctl->num; i++) {
if (_rtw_sec_camid_is_used(cam_ctl, i)) {
sec_key_id[sec_cam_num++] = i;
if (sec_cam_num == max_bk_key_num)
break;
}
}
_exit_critical_bh(&cam_ctl->lock, &irqL);
return sec_cam_num;
}
inline bool _rtw_camid_is_gk(_adapter *adapter, u8 cam_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
bool ret = _FALSE;
if (cam_id >= cam_ctl->num) {
rtw_warn_on(1);
goto exit;
}
if (_rtw_sec_camid_is_used(cam_ctl, cam_id) == _FALSE)
goto exit;
ret = (dvobj->cam_cache[cam_id].ctrl & BIT6) ? _TRUE : _FALSE;
exit:
return ret;
}
inline bool rtw_camid_is_gk(_adapter *adapter, u8 cam_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
bool ret;
_enter_critical_bh(&cam_ctl->lock, &irqL);
ret = _rtw_camid_is_gk(adapter, cam_id);
_exit_critical_bh(&cam_ctl->lock, &irqL);
return ret;
}
bool cam_cache_chk(_adapter *adapter, u8 id, u8 *addr, s16 kid, s8 gk)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
bool ret = _FALSE;
if (addr && _rtw_memcmp(dvobj->cam_cache[id].mac, addr, ETH_ALEN) == _FALSE)
goto exit;
if (kid >= 0 && kid != (dvobj->cam_cache[id].ctrl & 0x03))
goto exit;
if (gk != -1 && (gk ? _TRUE : _FALSE) != _rtw_camid_is_gk(adapter, id))
goto exit;
ret = _TRUE;
exit:
return ret;
}
s16 _rtw_camid_search(_adapter *adapter, u8 *addr, s16 kid, s8 gk)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
int i;
s16 cam_id = -1;
for (i = 0; i < cam_ctl->num; i++) {
if (cam_cache_chk(adapter, i, addr, kid, gk)) {
cam_id = i;
break;
}
}
if (0) {
if (addr)
RTW_INFO(FUNC_ADPT_FMT" addr:"MAC_FMT" kid:%d, gk:%d, return cam_id:%d\n"
, FUNC_ADPT_ARG(adapter), MAC_ARG(addr), kid, gk, cam_id);
else
RTW_INFO(FUNC_ADPT_FMT" addr:%p kid:%d, gk:%d, return cam_id:%d\n"
, FUNC_ADPT_ARG(adapter), addr, kid, gk, cam_id);
}
return cam_id;
}
s16 rtw_camid_search(_adapter *adapter, u8 *addr, s16 kid, s8 gk)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
s16 cam_id = -1;
_enter_critical_bh(&cam_ctl->lock, &irqL);
cam_id = _rtw_camid_search(adapter, addr, kid, gk);
_exit_critical_bh(&cam_ctl->lock, &irqL);
return cam_id;
}
s16 rtw_get_camid(_adapter *adapter, u8 *addr, s16 kid, u8 gk)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
int i;
#if 0 /* for testing */
static u8 start_id = 0;
#else
u8 start_id = 0;
#endif
s16 cam_id = -1;
if (addr == NULL) {
RTW_PRINT(FUNC_ADPT_FMT" mac_address is NULL\n"
, FUNC_ADPT_ARG(adapter));
rtw_warn_on(1);
goto _exit;
}
/* find cam entry which has the same addr, kid (, gk bit) */
if (_rtw_camctl_chk_cap(adapter, SEC_CAP_CHK_BMC) == _TRUE)
i = _rtw_camid_search(adapter, addr, kid, gk);
else
i = _rtw_camid_search(adapter, addr, kid, -1);
if (i >= 0) {
cam_id = i;
goto _exit;
}
for (i = 0; i < cam_ctl->num; i++) {
/* bypass default key which is allocated statically */
#ifndef CONFIG_CONCURRENT_MODE
if (((i + start_id) % cam_ctl->num) < 4)
continue;
#endif
if (_rtw_sec_camid_is_used(cam_ctl, ((i + start_id) % cam_ctl->num)) == _FALSE)
break;
}
if (i == cam_ctl->num) {
RTW_PRINT(FUNC_ADPT_FMT" %s key with "MAC_FMT" id:%u no room\n"
, FUNC_ADPT_ARG(adapter), gk ? "group" : "pairwise", MAC_ARG(addr), kid);
rtw_warn_on(1);
goto _exit;
}
cam_id = ((i + start_id) % cam_ctl->num);
start_id = ((i + start_id + 1) % cam_ctl->num);
_exit:
return cam_id;
}
s16 rtw_camid_alloc(_adapter *adapter, struct sta_info *sta, u8 kid, u8 gk, bool *used)
{
struct mlme_ext_info *mlmeinfo = &adapter->mlmeextpriv.mlmext_info;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
s16 cam_id = -1;
*used = _FALSE;
_enter_critical_bh(&cam_ctl->lock, &irqL);
if ((((mlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) || ((mlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE))
&& !sta) {
/*
* 1. non-STA mode WEP key
* 2. group TX key
*/
#ifndef CONFIG_CONCURRENT_MODE
/* static alloction to default key by key ID when concurrent is not defined */
if (kid > 3) {
RTW_PRINT(FUNC_ADPT_FMT" group key with invalid key id:%u\n"
, FUNC_ADPT_ARG(adapter), kid);
rtw_warn_on(1);
goto bitmap_handle;
}
cam_id = kid;
#else
u8 *addr = adapter_mac_addr(adapter);
cam_id = rtw_get_camid(adapter, addr, kid, gk);
if (1)
RTW_PRINT(FUNC_ADPT_FMT" group key with "MAC_FMT" assigned cam_id:%u\n"
, FUNC_ADPT_ARG(adapter), MAC_ARG(addr), cam_id);
#endif
} else {
/*
* 1. STA mode WEP key
* 2. STA mode group RX key
* 3. sta key (pairwise, group RX)
*/
u8 *addr = sta ? sta->cmn.mac_addr : NULL;
if (!sta) {
if (!(mlmeinfo->state & WIFI_FW_ASSOC_SUCCESS)) {
/* bypass STA mode group key setting before connected(ex:WEP) because bssid is not ready */
goto bitmap_handle;
}
addr = get_bssid(&adapter->mlmepriv);/*A2*/
}
cam_id = rtw_get_camid(adapter, addr, kid, gk);
}
bitmap_handle:
if (cam_id >= 0) {
*used = _rtw_sec_camid_is_used(cam_ctl, cam_id);
rtw_sec_cam_map_set(&cam_ctl->used, cam_id);
}
_exit_critical_bh(&cam_ctl->lock, &irqL);
return cam_id;
}
void rtw_camid_set(_adapter *adapter, u8 cam_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
if (cam_id < cam_ctl->num)
rtw_sec_cam_map_set(&cam_ctl->used, cam_id);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
void rtw_camid_free(_adapter *adapter, u8 cam_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
_enter_critical_bh(&cam_ctl->lock, &irqL);
if (cam_id < cam_ctl->num)
rtw_sec_cam_map_clr(&cam_ctl->used, cam_id);
_exit_critical_bh(&cam_ctl->lock, &irqL);
}
/*Must pause TX/RX before use this API*/
inline void rtw_sec_cam_swap(_adapter *adapter, u8 cam_id_a, u8 cam_id_b)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
struct sec_cam_ent cache_a, cache_b;
_irqL irqL;
bool cam_a_used, cam_b_used;
if (1)
RTW_INFO(ADPT_FMT" - sec_cam %d,%d swap\n", ADPT_ARG(adapter), cam_id_a, cam_id_b);
if (cam_id_a == cam_id_b)
return;
#ifdef CONFIG_CONCURRENT_MODE
rtw_mi_update_ap_bmc_camid(adapter, cam_id_a, cam_id_b);
#endif
/*setp-1. backup org cam_info*/
_enter_critical_bh(&cam_ctl->lock, &irqL);
cam_a_used = _rtw_sec_camid_is_used(cam_ctl, cam_id_a);
cam_b_used = _rtw_sec_camid_is_used(cam_ctl, cam_id_b);
if (cam_a_used)
_rtw_memcpy(&cache_a, &dvobj->cam_cache[cam_id_a], sizeof(struct sec_cam_ent));
if (cam_b_used)
_rtw_memcpy(&cache_b, &dvobj->cam_cache[cam_id_b], sizeof(struct sec_cam_ent));
_exit_critical_bh(&cam_ctl->lock, &irqL);
/*setp-2. clean cam_info*/
if (cam_a_used) {
rtw_camid_free(adapter, cam_id_a);
clear_cam_entry(adapter, cam_id_a);
}
if (cam_b_used) {
rtw_camid_free(adapter, cam_id_b);
clear_cam_entry(adapter, cam_id_b);
}
/*setp-3. set cam_info*/
if (cam_a_used) {
write_cam(adapter, cam_id_b, cache_a.ctrl, cache_a.mac, cache_a.key);
rtw_camid_set(adapter, cam_id_b);
}
if (cam_b_used) {
write_cam(adapter, cam_id_a, cache_b.ctrl, cache_b.mac, cache_b.key);
rtw_camid_set(adapter, cam_id_a);
}
}
s16 rtw_get_empty_cam_entry(_adapter *adapter, u8 start_camid)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl;
_irqL irqL;
int i;
s16 cam_id = -1;
_enter_critical_bh(&cam_ctl->lock, &irqL);
for (i = start_camid; i < cam_ctl->num; i++) {
if (_FALSE == _rtw_sec_camid_is_used(cam_ctl, i)) {
cam_id = i;
break;
}
}
_exit_critical_bh(&cam_ctl->lock, &irqL);
return cam_id;
}
void rtw_clean_dk_section(_adapter *adapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = dvobj_to_sec_camctl(dvobj);
s16 ept_cam_id;
int i;
for (i = 0; i < 4; i++) {
if (rtw_sec_camid_is_used(cam_ctl, i)) {
ept_cam_id = rtw_get_empty_cam_entry(adapter, 4);
if (ept_cam_id > 0)
rtw_sec_cam_swap(adapter, i, ept_cam_id);
}
}
}
void rtw_clean_hw_dk_cam(_adapter *adapter)
{
int i;
for (i = 0; i < 4; i++)
rtw_sec_clr_cam_ent(adapter, i);
/*_clear_cam_entry(adapter, i);*/
}
void flush_all_cam_entry(_adapter *padapter)
{
#ifdef CONFIG_CONCURRENT_MODE
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE)) {
struct sta_priv *pstapriv = &padapter->stapriv;
struct sta_info *psta;
psta = rtw_get_stainfo(pstapriv, pmlmeinfo->network.MacAddress);
if (psta) {
if (psta->state & WIFI_AP_STATE) {
/*clear cam when ap free per sta_info*/
} else
rtw_clearstakey_cmd(padapter, psta, _FALSE);
}
} else if (MLME_IS_AP(padapter) || MLME_IS_MESH(padapter)) {
#if 1
int cam_id = -1;
u8 *addr = adapter_mac_addr(padapter);
while ((cam_id = rtw_camid_search(padapter, addr, -1, -1)) >= 0) {
RTW_PRINT("clear wep or group key for addr:"MAC_FMT", camid:%d\n", MAC_ARG(addr), cam_id);
clear_cam_entry(padapter, cam_id);
rtw_camid_free(padapter, cam_id);
}
#else
/* clear default key */
int i, cam_id;
u8 null_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
for (i = 0; i < 4; i++) {
cam_id = rtw_camid_search(padapter, null_addr, i, -1);
if (cam_id >= 0) {
clear_cam_entry(padapter, cam_id);
rtw_camid_free(padapter, cam_id);
}
}
/* clear default key related key search setting */
rtw_hal_set_hwreg(padapter, HW_VAR_SEC_DK_CFG, (u8 *)_FALSE);
#endif
}
#else /*NON CONFIG_CONCURRENT_MODE*/
invalidate_cam_all(padapter);
/* clear default key related key search setting */
rtw_hal_set_hwreg(padapter, HW_VAR_SEC_DK_CFG, (u8 *)_FALSE);
#endif
}
#if defined(CONFIG_P2P) && defined(CONFIG_WFD)
void rtw_process_wfd_ie(_adapter *adapter, u8 *wfd_ie, u8 wfd_ielen, const char *tag)
{
struct wifidirect_info *wdinfo = &adapter->wdinfo;
u8 *attr_content;
u32 attr_contentlen = 0;
if (!hal_chk_wl_func(adapter, WL_FUNC_MIRACAST))
return;
RTW_INFO("[%s] Found WFD IE\n", tag);
attr_content = rtw_get_wfd_attr_content(wfd_ie, wfd_ielen, WFD_ATTR_DEVICE_INFO, NULL, &attr_contentlen);
if (attr_content && attr_contentlen) {
wdinfo->wfd_info->peer_rtsp_ctrlport = RTW_GET_BE16(attr_content + 2);
RTW_INFO("[%s] Peer PORT NUM = %d\n", tag, wdinfo->wfd_info->peer_rtsp_ctrlport);
}
}
void rtw_process_wfd_ies(_adapter *adapter, u8 *ies, u8 ies_len, const char *tag)
{
u8 *wfd_ie;
u32 wfd_ielen;
if (!hal_chk_wl_func(adapter, WL_FUNC_MIRACAST))
return;
wfd_ie = rtw_get_wfd_ie(ies, ies_len, NULL, &wfd_ielen);
while (wfd_ie) {
rtw_process_wfd_ie(adapter, wfd_ie, wfd_ielen, tag);
wfd_ie = rtw_get_wfd_ie(wfd_ie + wfd_ielen, (ies + ies_len) - (wfd_ie + wfd_ielen), NULL, &wfd_ielen);
}
}
#endif /* defined(CONFIG_P2P) && defined(CONFIG_WFD) */
int WMM_param_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
/* struct registry_priv *pregpriv = &padapter->registrypriv; */
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pmlmepriv->qospriv.qos_option == 0) {
pmlmeinfo->WMM_enable = 0;
return _FALSE;
}
if (_rtw_memcmp(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element)))
return _FALSE;
else
_rtw_memcpy(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element));
pmlmeinfo->WMM_enable = 1;
return _TRUE;
#if 0
if (pregpriv->wifi_spec == 1) {
if (pmlmeinfo->WMM_enable == 1) {
/* todo: compare the parameter set count & decide wheher to update or not */
return _FAIL;
} else {
pmlmeinfo->WMM_enable = 1;
_rtw_rtw_memcpy(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element));
return _TRUE;
}
} else {
pmlmeinfo->WMM_enable = 0;
return _FAIL;
}
#endif
}
void WMMOnAssocRsp(_adapter *padapter)
{
u8 ACI, ACM, AIFS, ECWMin, ECWMax, aSifsTime;
u8 acm_mask;
u16 TXOP;
u32 acParm, i;
u32 edca[4], inx[4];
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
struct registry_priv *pregpriv = &padapter->registrypriv;
#ifdef CONFIG_WMMPS_STA
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct qos_priv *pqospriv = &pmlmepriv->qospriv;
#endif /* CONFIG_WMMPS_STA */
acm_mask = 0;
if (is_supported_5g(pmlmeext->cur_wireless_mode) ||
(pmlmeext->cur_wireless_mode & WIRELESS_11_24N))
aSifsTime = 16;
else
aSifsTime = 10;
if (pmlmeinfo->WMM_enable == 0) {
padapter->mlmepriv.acm_mask = 0;
AIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
if (pmlmeext->cur_wireless_mode & (WIRELESS_11G | WIRELESS_11A)) {
ECWMin = 4;
ECWMax = 10;
} else if (pmlmeext->cur_wireless_mode & WIRELESS_11B) {
ECWMin = 5;
ECWMax = 10;
} else {
ECWMin = 4;
ECWMax = 10;
}
TXOP = 0;
acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16);
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BE, (u8 *)(&acParm));
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BK, (u8 *)(&acParm));
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VI, (u8 *)(&acParm));
ECWMin = 2;
ECWMax = 3;
TXOP = 0x2f;
acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16);
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VO, (u8 *)(&acParm));
} else {
edca[0] = edca[1] = edca[2] = edca[3] = 0;
for (i = 0; i < 4; i++) {
ACI = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 5) & 0x03;
ACM = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 4) & 0x01;
/* AIFS = AIFSN * slot time + SIFS - r2t phy delay */
AIFS = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN & 0x0f) * pmlmeinfo->slotTime + aSifsTime;
ECWMin = (pmlmeinfo->WMM_param.ac_param[i].CW & 0x0f);
ECWMax = (pmlmeinfo->WMM_param.ac_param[i].CW & 0xf0) >> 4;
TXOP = le16_to_cpu(pmlmeinfo->WMM_param.ac_param[i].TXOP_limit);
acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16);
switch (ACI) {
case 0x0:
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BE, (u8 *)(&acParm));
acm_mask |= (ACM ? BIT(1) : 0);
edca[XMIT_BE_QUEUE] = acParm;
break;
case 0x1:
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BK, (u8 *)(&acParm));
/* acm_mask |= (ACM? BIT(0):0); */
edca[XMIT_BK_QUEUE] = acParm;
break;
case 0x2:
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VI, (u8 *)(&acParm));
acm_mask |= (ACM ? BIT(2) : 0);
edca[XMIT_VI_QUEUE] = acParm;
break;
case 0x3:
rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VO, (u8 *)(&acParm));
acm_mask |= (ACM ? BIT(3) : 0);
edca[XMIT_VO_QUEUE] = acParm;
break;
}
RTW_INFO("WMM(%x): %x, %x\n", ACI, ACM, acParm);
}
if (padapter->registrypriv.acm_method == 1)
rtw_hal_set_hwreg(padapter, HW_VAR_ACM_CTRL, (u8 *)(&acm_mask));
else
padapter->mlmepriv.acm_mask = acm_mask;
inx[0] = 0;
inx[1] = 1;
inx[2] = 2;
inx[3] = 3;
if (pregpriv->wifi_spec == 1) {
u32 j, tmp, change_inx = _FALSE;
/* entry indx: 0->vo, 1->vi, 2->be, 3->bk. */
for (i = 0; i < 4; i++) {
for (j = i + 1; j < 4; j++) {
/* compare CW and AIFS */
if ((edca[j] & 0xFFFF) < (edca[i] & 0xFFFF))
change_inx = _TRUE;
else if ((edca[j] & 0xFFFF) == (edca[i] & 0xFFFF)) {
/* compare TXOP */
if ((edca[j] >> 16) > (edca[i] >> 16))
change_inx = _TRUE;
}
if (change_inx) {
tmp = edca[i];
edca[i] = edca[j];
edca[j] = tmp;
tmp = inx[i];
inx[i] = inx[j];
inx[j] = tmp;
change_inx = _FALSE;
}
}
}
}
for (i = 0; i < 4; i++) {
pxmitpriv->wmm_para_seq[i] = inx[i];
RTW_INFO("wmm_para_seq(%d): %d\n", i, pxmitpriv->wmm_para_seq[i]);
}
#ifdef CONFIG_WMMPS_STA
/* if AP supports UAPSD function, driver must set each uapsd TID to coresponding mac register 0x693 */
if (pmlmeinfo->WMM_param.QoS_info & AP_SUPPORTED_UAPSD) {
pqospriv->uapsd_ap_supported = 1;
rtw_hal_set_hwreg(padapter, HW_VAR_UAPSD_TID, NULL);
}
#endif /* CONFIG_WMMPS_STA */
}
}
static void bwmode_update_check(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
#ifdef CONFIG_80211N_HT
unsigned char new_bwmode;
unsigned char new_ch_offset;
struct HT_info_element *pHT_info;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
struct ht_priv *phtpriv = &pmlmepriv->htpriv;
u8 cbw40_enable = 0;
if (!pIE)
return;
if (phtpriv->ht_option == _FALSE)
return;
if (pmlmeext->cur_bwmode >= CHANNEL_WIDTH_80)
return;
if (pIE->Length > sizeof(struct HT_info_element))
return;
pHT_info = (struct HT_info_element *)pIE->data;
if (hal_chk_bw_cap(padapter, BW_CAP_40M)) {
if (pmlmeext->cur_channel > 14) {
if (REGSTY_IS_BW_5G_SUPPORT(pregistrypriv, CHANNEL_WIDTH_40))
cbw40_enable = 1;
} else {
if (REGSTY_IS_BW_2G_SUPPORT(pregistrypriv, CHANNEL_WIDTH_40))
cbw40_enable = 1;
}
}
if ((pHT_info->infos[0] & BIT(2)) && cbw40_enable) {
new_bwmode = CHANNEL_WIDTH_40;
switch (pHT_info->infos[0] & 0x3) {
case 1:
new_ch_offset = HAL_PRIME_CHNL_OFFSET_LOWER;
break;
case 3:
new_ch_offset = HAL_PRIME_CHNL_OFFSET_UPPER;
break;
default:
new_bwmode = CHANNEL_WIDTH_20;
new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
break;
}
} else {
new_bwmode = CHANNEL_WIDTH_20;
new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
}
if ((new_bwmode != pmlmeext->cur_bwmode || new_ch_offset != pmlmeext->cur_ch_offset)
&& new_bwmode < pmlmeext->cur_bwmode
) {
pmlmeinfo->bwmode_updated = _TRUE;
pmlmeext->cur_bwmode = new_bwmode;
pmlmeext->cur_ch_offset = new_ch_offset;
/* update HT info also */
HT_info_handler(padapter, pIE);
} else
pmlmeinfo->bwmode_updated = _FALSE;
if (_TRUE == pmlmeinfo->bwmode_updated) {
struct sta_info *psta;
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
struct sta_priv *pstapriv = &padapter->stapriv;
/* set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); */
/* update ap's stainfo */
psta = rtw_get_stainfo(pstapriv, cur_network->MacAddress);
if (psta) {
struct ht_priv *phtpriv_sta = &psta->htpriv;
if (phtpriv_sta->ht_option) {
/* bwmode */
psta->cmn.bw_mode = pmlmeext->cur_bwmode;
phtpriv_sta->ch_offset = pmlmeext->cur_ch_offset;
} else {
psta->cmn.bw_mode = CHANNEL_WIDTH_20;
phtpriv_sta->ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
}
rtw_dm_ra_mask_wk_cmd(padapter, (u8 *)psta);
}
/* pmlmeinfo->bwmode_updated = _FALSE; */ /* bwmode_updated done, reset it! */
}
#endif /* CONFIG_80211N_HT */
}
#ifdef ROKU_PRIVATE
void Supported_rate_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
unsigned int i;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pIE == NULL)
return;
for (i = 0 ; i < pIE->Length; i++)
pmlmeinfo->SupportedRates_infra_ap[i] = (pIE->data[i]);
}
void Extended_Supported_rate_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
unsigned int i, j;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pIE == NULL)
return;
if (pIE->Length > 0) {
for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) {
if (pmlmeinfo->SupportedRates_infra_ap[i] == 0)
break;
}
for (j = 0; j < pIE->Length; j++)
pmlmeinfo->SupportedRates_infra_ap[i+j] = (pIE->data[j]);
}
}
void HT_get_ss_from_mcs_set(u8 *mcs_set, u8 *Rx_ss)
{
u8 i, j;
u8 r_ss = 0, t_ss = 0;
for (i = 0; i < 4; i++) {
if ((mcs_set[3-i] & 0xff) != 0x00) {
r_ss = 4-i;
break;
}
}
*Rx_ss = r_ss;
}
void HT_caps_handler_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
unsigned int i;
u8 cur_stbc_cap_infra_ap = 0;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct ht_priv_infra_ap *phtpriv = &pmlmepriv->htpriv_infra_ap;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pIE == NULL)
return;
pmlmeinfo->ht_vht_received |= BIT(0);
/*copy MCS_SET*/
for (i = 3; i < 19; i++)
phtpriv->MCS_set_infra_ap[i-3] = (pIE->data[i]);
/*get number of stream from mcs set*/
HT_get_ss_from_mcs_set(phtpriv->MCS_set_infra_ap, &phtpriv->Rx_ss_infra_ap);
phtpriv->rx_highest_data_rate_infra_ap = le16_to_cpu(GET_HT_CAP_ELE_RX_HIGHEST_DATA_RATE(pIE->data));
phtpriv->ldpc_cap_infra_ap = GET_HT_CAP_ELE_LDPC_CAP(pIE->data);
if (GET_HT_CAP_ELE_RX_STBC(pIE->data))
SET_FLAG(cur_stbc_cap_infra_ap, STBC_HT_ENABLE_RX);
if (GET_HT_CAP_ELE_TX_STBC(pIE->data))
SET_FLAG(cur_stbc_cap_infra_ap, STBC_HT_ENABLE_TX);
phtpriv->stbc_cap_infra_ap = cur_stbc_cap_infra_ap;
/*store ap info SGI 20m 40m*/
phtpriv->sgi_20m_infra_ap = GET_HT_CAP_ELE_SHORT_GI20M(pIE->data);
phtpriv->sgi_40m_infra_ap = GET_HT_CAP_ELE_SHORT_GI40M(pIE->data);
/*store ap info for supported channel bandwidth*/
phtpriv->channel_width_infra_ap = GET_HT_CAP_ELE_CHL_WIDTH(pIE->data);
}
#endif /* ROKU_PRIVATE */
void HT_caps_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
#ifdef CONFIG_80211N_HT
unsigned int i;
u8 max_AMPDU_len, min_MPDU_spacing;
u8 cur_ldpc_cap = 0, cur_stbc_cap = 0, cur_beamform_cap = 0, tx_nss = 0;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct ht_priv *phtpriv = &pmlmepriv->htpriv;
#ifdef CONFIG_DISABLE_MCS13TO15
struct registry_priv *pregistrypriv = &padapter->registrypriv;
#endif
if (pIE == NULL)
return;
if (phtpriv->ht_option == _FALSE)
return;
pmlmeinfo->HT_caps_enable = 1;
for (i = 0; i < (pIE->Length); i++) {
if (i != 2) {
/* Commented by Albert 2010/07/12 */
/* Got the endian issue here. */
pmlmeinfo->HT_caps.u.HT_cap[i] &= (pIE->data[i]);
} else {
/* AMPDU Parameters field */
/* Get MIN of MAX AMPDU Length Exp */
if ((pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x3) > (pIE->data[i] & 0x3))
max_AMPDU_len = (pIE->data[i] & 0x3);
else
max_AMPDU_len = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x3);
/* Get MAX of MIN MPDU Start Spacing */
if ((pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c) > (pIE->data[i] & 0x1c))
min_MPDU_spacing = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c);
else
min_MPDU_spacing = (pIE->data[i] & 0x1c);
pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para = max_AMPDU_len | min_MPDU_spacing;
}
}
/* Commented by Albert 2010/07/12 */
/* Have to handle the endian issue after copying. */
/* HT_ext_caps didn't be used yet. */
pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info = le16_to_cpu(pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info);
pmlmeinfo->HT_caps.u.HT_cap_element.HT_ext_caps = le16_to_cpu(pmlmeinfo->HT_caps.u.HT_cap_element.HT_ext_caps);
/* update the MCS set */
for (i = 0; i < 16; i++)
pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate[i] &= pmlmeext->default_supported_mcs_set[i];
tx_nss = GET_HAL_TX_NSS(padapter);
switch (tx_nss) {
case 1:
set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_1R);
break;
case 2:
#ifdef CONFIG_DISABLE_MCS13TO15
if (pmlmeext->cur_bwmode == CHANNEL_WIDTH_40 && pregistrypriv->wifi_spec != 1)
set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_2R_13TO15_OFF);
else
#endif
set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_2R);
break;
case 3:
set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_3R);
break;
case 4:
set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_4R);
break;
default:
RTW_WARN("rf_type:%d or tx_nss:%u is not expected\n", GET_HAL_RFPATH(padapter), tx_nss);
}
if (check_fwstate(pmlmepriv, WIFI_AP_STATE)) {
/* Config STBC setting */
if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_TX) && GET_HT_CAP_ELE_RX_STBC(pIE->data)) {
SET_FLAG(cur_stbc_cap, STBC_HT_ENABLE_TX);
RTW_INFO("Enable HT Tx STBC !\n");
}
phtpriv->stbc_cap = cur_stbc_cap;
#ifdef CONFIG_BEAMFORMING
/* Config Tx beamforming setting */
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(pIE->data) << 6);
}
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMER_STEER_NUM*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(pIE->data) << 4);
}
phtpriv->beamform_cap = cur_beamform_cap;
if (cur_beamform_cap)
RTW_INFO("AP HT Beamforming Cap = 0x%02X\n", cur_beamform_cap);
#endif /*CONFIG_BEAMFORMING*/
} else {
/*WIFI_STATION_STATEorI_ADHOC_STATE or WIFI_ADHOC_MASTER_STATE*/
/* Config LDPC Coding Capability */
if (TEST_FLAG(phtpriv->ldpc_cap, LDPC_HT_ENABLE_TX) && GET_HT_CAP_ELE_LDPC_CAP(pIE->data)) {
SET_FLAG(cur_ldpc_cap, (LDPC_HT_ENABLE_TX | LDPC_HT_CAP_TX));
RTW_INFO("Enable HT Tx LDPC!\n");
}
phtpriv->ldpc_cap = cur_ldpc_cap;
/* Config STBC setting */
if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_TX) && GET_HT_CAP_ELE_RX_STBC(pIE->data)) {
SET_FLAG(cur_stbc_cap, (STBC_HT_ENABLE_TX | STBC_HT_CAP_TX));
RTW_INFO("Enable HT Tx STBC!\n");
}
phtpriv->stbc_cap = cur_stbc_cap;
#ifdef CONFIG_BEAMFORMING
#ifdef RTW_BEAMFORMING_VERSION_2
/* Config beamforming setting */
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(pIE->data) << 6);
}
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMER_STEER_NUM*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(pIE->data) << 4);
}
#else /* !RTW_BEAMFORMING_VERSION_2 */
/* Config Tx beamforming setting */
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(pIE->data) << 6);
}
if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE) &&
GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(pIE->data)) {
SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE);
/* Shift to BEAMFORMING_HT_BEAMFORMER_STEER_NUM*/
SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(pIE->data) << 4);
}
#endif /* !RTW_BEAMFORMING_VERSION_2 */
phtpriv->beamform_cap = cur_beamform_cap;
if (cur_beamform_cap)
RTW_INFO("Client HT Beamforming Cap = 0x%02X\n", cur_beamform_cap);
#endif /*CONFIG_BEAMFORMING*/
}
#endif /* CONFIG_80211N_HT */
}
void HT_info_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
#ifdef CONFIG_80211N_HT
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct ht_priv *phtpriv = &pmlmepriv->htpriv;
if (pIE == NULL)
return;
if (phtpriv->ht_option == _FALSE)
return;
if (pIE->Length > sizeof(struct HT_info_element))
return;
pmlmeinfo->HT_info_enable = 1;
_rtw_memcpy(&(pmlmeinfo->HT_info), pIE->data, pIE->Length);
#endif /* CONFIG_80211N_HT */
return;
}
void HTOnAssocRsp(_adapter *padapter)
{
unsigned char max_AMPDU_len;
unsigned char min_MPDU_spacing;
/* struct registry_priv *pregpriv = &padapter->registrypriv; */
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
RTW_INFO("%s\n", __FUNCTION__);
if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable))
pmlmeinfo->HT_enable = 1;
else {
pmlmeinfo->HT_enable = 0;
/* set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); */
return;
}
/* handle A-MPDU parameter field */
/*
AMPDU_para [1:0]:Max AMPDU Len => 0:8k , 1:16k, 2:32k, 3:64k
AMPDU_para [4:2]:Min MPDU Start Spacing
*/
max_AMPDU_len = pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x03;
min_MPDU_spacing = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c) >> 2;
rtw_hal_set_hwreg(padapter, HW_VAR_AMPDU_MIN_SPACE, (u8 *)(&min_MPDU_spacing));
#ifdef CONFIG_80211N_HT
rtw_hal_set_hwreg(padapter, HW_VAR_AMPDU_FACTOR, (u8 *)(&max_AMPDU_len));
#endif /* CONFIG_80211N_HT */
#if 0 /* move to rtw_update_ht_cap() */
if ((pregpriv->bw_mode > 0) &&
(pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info & BIT(1)) &&
(pmlmeinfo->HT_info.infos[0] & BIT(2))) {
/* switch to the 40M Hz mode accoring to the AP */
pmlmeext->cur_bwmode = CHANNEL_WIDTH_40;
switch ((pmlmeinfo->HT_info.infos[0] & 0x3)) {
case EXTCHNL_OFFSET_UPPER:
pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_LOWER;
break;
case EXTCHNL_OFFSET_LOWER:
pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_UPPER;
break;
default:
pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
break;
}
}
#endif
/* set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); */
#if 0 /* move to rtw_update_ht_cap() */
/* */
/* Config SM Power Save setting */
/* */
pmlmeinfo->SM_PS = (pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info & 0x0C) >> 2;
if (pmlmeinfo->SM_PS == WLAN_HT_CAP_SM_PS_STATIC) {
#if 0
u8 i;
/* update the MCS rates */
for (i = 0; i < 16; i++)
pmlmeinfo->HT_caps.HT_cap_element.MCS_rate[i] &= MCS_rate_1R[i];
#endif
RTW_INFO("%s(): WLAN_HT_CAP_SM_PS_STATIC\n", __FUNCTION__);
}
/* */
/* Config current HT Protection mode. */
/* */
pmlmeinfo->HT_protection = pmlmeinfo->HT_info.infos[1] & 0x3;
#endif
}
void ERP_IE_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE)
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (pIE->Length > 1)
return;
pmlmeinfo->ERP_enable = 1;
_rtw_memcpy(&(pmlmeinfo->ERP_IE), pIE->data, pIE->Length);
}
void VCS_update(_adapter *padapter, struct sta_info *psta)
{
struct registry_priv *pregpriv = &padapter->registrypriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
switch (pregpriv->vrtl_carrier_sense) { /* 0:off 1:on 2:auto */
case 0: /* off */
psta->rtsen = 0;
psta->cts2self = 0;
break;
case 1: /* on */
if (pregpriv->vcs_type == 1) { /* 1:RTS/CTS 2:CTS to self */
psta->rtsen = 1;
psta->cts2self = 0;
} else {
psta->rtsen = 0;
psta->cts2self = 1;
}
break;
case 2: /* auto */
default:
if (((pmlmeinfo->ERP_enable) && (pmlmeinfo->ERP_IE & BIT(1)))
/*||(pmlmepriv->ht_op_mode & HT_INFO_OPERATION_MODE_NON_GF_DEVS_PRESENT)*/
) {
if (pregpriv->vcs_type == 1) {
psta->rtsen = 1;
psta->cts2self = 0;
} else {
psta->rtsen = 0;
psta->cts2self = 1;
}
} else {
psta->rtsen = 0;
psta->cts2self = 0;
}
break;
}
}
void update_ldpc_stbc_cap(struct sta_info *psta)
{
#ifdef CONFIG_80211N_HT
#ifdef CONFIG_80211AC_VHT
if (psta->vhtpriv.vht_option) {
if (TEST_FLAG(psta->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_TX))
psta->cmn.ldpc_en = VHT_LDPC_EN;
else
psta->cmn.ldpc_en = 0;
if (TEST_FLAG(psta->vhtpriv.stbc_cap, STBC_VHT_ENABLE_TX))
psta->cmn.stbc_en = VHT_STBC_EN;
else
psta->cmn.stbc_en = 0;
} else
#endif /* CONFIG_80211AC_VHT */
if (psta->htpriv.ht_option) {
if (TEST_FLAG(psta->htpriv.ldpc_cap, LDPC_HT_ENABLE_TX))
psta->cmn.ldpc_en = HT_LDPC_EN;
else
psta->cmn.ldpc_en = 0;
if (TEST_FLAG(psta->htpriv.stbc_cap, STBC_HT_ENABLE_TX))
psta->cmn.stbc_en = HT_STBC_EN;
else
psta->cmn.stbc_en = 0;
} else {
psta->cmn.ldpc_en = 0;
psta->cmn.stbc_en = 0;
}
#endif /* CONFIG_80211N_HT */
}
int check_ielen(u8 *start, uint len)
{
int left = len;
u8 *pos = start;
u8 id, elen;
while (left >= 2) {
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left) {
RTW_INFO("IEEE 802.11 element parse failed (id=%d elen=%d left=%lu)\n",
id, elen, (unsigned long) left);
return _FALSE;
}
if ((id == WLAN_EID_VENDOR_SPECIFIC) && (elen < 3))
return _FALSE;
left -= elen;
pos += elen;
}
if (left)
return _FALSE;
return _TRUE;
}
int validate_beacon_len(u8 *pframe, u32 len)
{
u8 ie_offset = _BEACON_IE_OFFSET_ + sizeof(struct rtw_ieee80211_hdr_3addr);
if (len < ie_offset) {
RTW_INFO("%s: incorrect beacon length(%d)\n", __func__, len);
return _FALSE;
}
if (check_ielen(pframe + ie_offset, len - ie_offset) == _FALSE)
return _FALSE;
return _TRUE;
}
u8 support_rate_ranges[] = {
IEEE80211_CCK_RATE_1MB,
IEEE80211_CCK_RATE_2MB,
IEEE80211_CCK_RATE_5MB,
IEEE80211_CCK_RATE_11MB,
IEEE80211_OFDM_RATE_6MB,
IEEE80211_OFDM_RATE_9MB,
IEEE80211_OFDM_RATE_12MB,
IEEE80211_OFDM_RATE_18MB,
IEEE80211_OFDM_RATE_24MB,
IEEE80211_OFDM_RATE_36MB,
IEEE80211_OFDM_RATE_48MB,
IEEE80211_OFDM_RATE_54MB,
};
inline bool match_ranges(u16 EID, u32 value)
{
int i;
int nr_range;
switch (EID) {
case _EXT_SUPPORTEDRATES_IE_:
case _SUPPORTEDRATES_IE_:
nr_range = sizeof(support_rate_ranges)/sizeof(u8);
for (i = 0; i < nr_range; i++) {
/* clear bit7 before searching. */
value &= ~BIT(7);
if (value == support_rate_ranges[i])
return _TRUE;
}
break;
default:
break;
};
return _FALSE;
}
/*
* rtw_validate_value: validate the IE contain.
*
* Input :
* EID : Element ID
* p : IE buffer (without EID & length)
* len : IE length
* return:
* _TRUE : All Values are validated.
* _FALSE : At least one value is NOT validated.
*/
bool rtw_validate_value(u16 EID, u8 *p, u16 len)
{
u8 rate;
u32 i, nr_val;
switch (EID) {
case _EXT_SUPPORTEDRATES_IE_:
case _SUPPORTEDRATES_IE_:
nr_val = len;
for (i=0; i<nr_val; i++) {
rate = *(p+i);
if (match_ranges(EID, rate) == _FALSE)
return _FALSE;
}
break;
default:
break;
};
return _TRUE;
}
bool is_hidden_ssid(char *ssid, int len)
{
return len == 0 || is_all_null(ssid, len) == _TRUE;
}
inline bool hidden_ssid_ap(WLAN_BSSID_EX *snetwork)
{
return is_hidden_ssid(snetwork->Ssid.Ssid, snetwork->Ssid.SsidLength);
}
/*
Get SSID if this ilegal frame(probe resp) comes from a hidden SSID AP.
Update the SSID to the corresponding pnetwork in scan queue.
*/
void rtw_absorb_ssid_ifneed(_adapter *padapter, WLAN_BSSID_EX *bssid, u8 *pframe)
{
struct wlan_network *scanned = NULL;
WLAN_BSSID_EX *snetwork;
u8 ie_offset, *p=NULL, *next_ie=NULL, *mac = get_addr2_ptr(pframe);
sint ssid_len_ori;
u32 remain_len = 0;
u8 backupIE[MAX_IE_SZ];
u16 subtype = get_frame_sub_type(pframe);
_irqL irqL;
if ((!bssid) || (!pframe))
return;
if (subtype == WIFI_BEACON) {
bssid->Reserved[0] = BSS_TYPE_BCN;
ie_offset = _BEACON_IE_OFFSET_;
} else {
/* FIXME : more type */
if (subtype == WIFI_PROBERSP) {
ie_offset = _PROBERSP_IE_OFFSET_;
bssid->Reserved[0] = BSS_TYPE_PROB_RSP;
} else if (subtype == WIFI_PROBEREQ) {
ie_offset = _PROBEREQ_IE_OFFSET_;
bssid->Reserved[0] = BSS_TYPE_PROB_REQ;
} else {
bssid->Reserved[0] = BSS_TYPE_UNDEF;
ie_offset = _FIXED_IE_LENGTH_;
}
}
_enter_critical_bh(&padapter->mlmepriv.scanned_queue.lock, &irqL);
scanned = _rtw_find_network(&padapter->mlmepriv.scanned_queue, mac);
if (!scanned) {
_exit_critical_bh(&padapter->mlmepriv.scanned_queue.lock, &irqL);
return;
}
snetwork = &(scanned->network);
/* scan queue records as Hidden SSID && Input frame is NOT Hidden SSID */
if (hidden_ssid_ap(snetwork) && !hidden_ssid_ap(bssid)) {
p = rtw_get_ie(snetwork->IEs+ie_offset, _SSID_IE_, &ssid_len_ori, snetwork->IELength-ie_offset);
if (!p) {
_exit_critical_bh(&padapter->mlmepriv.scanned_queue.lock, &irqL);
return;
}
next_ie = p + 2 + ssid_len_ori;
remain_len = snetwork->IELength - (next_ie - snetwork->IEs);
scanned->network.Ssid.SsidLength = bssid->Ssid.SsidLength;
_rtw_memcpy(scanned->network.Ssid.Ssid, bssid->Ssid.Ssid, bssid->Ssid.SsidLength);
//update pnetwork->ssid, pnetwork->ssidlen
_rtw_memcpy(backupIE, next_ie, remain_len);
*(p+1) = bssid->Ssid.SsidLength;
_rtw_memcpy(p+2, bssid->Ssid.Ssid, bssid->Ssid.SsidLength);
_rtw_memcpy(p+2+bssid->Ssid.SsidLength, backupIE, remain_len);
snetwork->IELength += bssid->Ssid.SsidLength;
}
_exit_critical_bh(&padapter->mlmepriv.scanned_queue.lock, &irqL);
}
#ifdef DBG_RX_BCN
void rtw_debug_rx_bcn(_adapter *adapter, u8 *pframe, u32 packet_len)
{
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
struct mlme_ext_info *mlmeinfo = &(pmlmeext->mlmext_info);
u16 sn = ((struct rtw_ieee80211_hdr_3addr *)pframe)->seq_ctl >> 4;
u64 tsf, tsf_offset;
u8 dtim_cnt, dtim_period, tim_bmap, tim_pvbit;
update_TSF(pmlmeext, pframe, packet_len);
tsf = pmlmeext->TSFValue;
tsf_offset = rtw_modular64(pmlmeext->TSFValue, (mlmeinfo->bcn_interval * 1024));
/*get TIM IE*/
/*DTIM Count*/
dtim_cnt = pmlmeext->tim[0];
/*DTIM Period*/
dtim_period = pmlmeext->tim[1];
/*Bitmap*/
tim_bmap = pmlmeext->tim[2];
/*Partial VBitmap AID 0 ~ 7*/
tim_pvbit = pmlmeext->tim[3];
RTW_INFO("[BCN] SN-%d, TSF-%lld(us), offset-%lld, bcn_interval-%d DTIM-%d[%d] bitmap-0x%02x-0x%02x\n",
sn, tsf, tsf_offset, mlmeinfo->bcn_interval, dtim_period, dtim_cnt, tim_bmap, tim_pvbit);
}
#endif
/*
* rtw_get_bcn_keys: get beacon keys from recv frame
*
* TODO:
* WLAN_EID_COUNTRY
* WLAN_EID_ERP_INFO
* WLAN_EID_CHANNEL_SWITCH
* WLAN_EID_PWR_CONSTRAINT
*/
int _rtw_get_bcn_keys(u8 *cap_info, u32 buf_len, u8 def_ch, ADAPTER *adapter
, struct beacon_keys *recv_beacon)
{
int left;
u16 capability;
unsigned char *pos;
struct rtw_ieee802_11_elems elems;
_rtw_memset(recv_beacon, 0, sizeof(*recv_beacon));
/* checking capabilities */
capability = le16_to_cpu(*(unsigned short *)(cap_info));
/* checking IEs */
left = buf_len - 2;
pos = cap_info + 2;
if (rtw_ieee802_11_parse_elems(pos, left, &elems, 1) == ParseFailed)
return _FALSE;
if (elems.ht_capabilities) {
if (elems.ht_capabilities_len != 26)
return _FALSE;
}
if (elems.ht_operation) {
if (elems.ht_operation_len != 22)
return _FALSE;
}
if (elems.vht_capabilities) {
if (elems.vht_capabilities_len != 12)
return _FALSE;
}
if (elems.vht_operation) {
if (elems.vht_operation_len != 5)
return _FALSE;
}
if (rtw_ies_get_supported_rate(pos, left, recv_beacon->rate_set, &recv_beacon->rate_num) == _FAIL)
return _FALSE;
if (cckratesonly_included(recv_beacon->rate_set, recv_beacon->rate_num) == _TRUE)
recv_beacon->proto_cap |= PROTO_CAP_11B;
else if (cckrates_included(recv_beacon->rate_set, recv_beacon->rate_num) == _TRUE)
recv_beacon->proto_cap |= PROTO_CAP_11B | PROTO_CAP_11G;
else
recv_beacon->proto_cap |= PROTO_CAP_11G;
if (elems.ht_capabilities && elems.ht_operation)
recv_beacon->proto_cap |= PROTO_CAP_11N;
if (elems.vht_capabilities && elems.vht_operation)
recv_beacon->proto_cap |= PROTO_CAP_11AC;
/* check bw and channel offset */
rtw_ies_get_chbw(pos, left, &recv_beacon->ch, &recv_beacon->bw, &recv_beacon->offset, 1, 1);
if (!recv_beacon->ch)
recv_beacon->ch = def_ch;
/* checking SSID */
if (elems.ssid) {
if (elems.ssid_len > sizeof(recv_beacon->ssid))
return _FALSE;
_rtw_memcpy(recv_beacon->ssid, elems.ssid, elems.ssid_len);
recv_beacon->ssid_len = elems.ssid_len;
}
/* checking RSN first */
if (elems.rsn_ie && elems.rsn_ie_len) {
recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WPA2;
rtw_parse_wpa2_ie(elems.rsn_ie - 2, elems.rsn_ie_len + 2,
&recv_beacon->group_cipher, &recv_beacon->pairwise_cipher,
&recv_beacon->akm, NULL);
}
/* checking WPA secon */
else if (elems.wpa_ie && elems.wpa_ie_len) {
recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WPA;
rtw_parse_wpa_ie(elems.wpa_ie - 2, elems.wpa_ie_len + 2,
&recv_beacon->group_cipher, &recv_beacon->pairwise_cipher,
&recv_beacon->akm);
} else if (capability & BIT(4))
recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WEP;
if (adapter) {
if (elems.tim && elems.tim_len) {
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
#ifdef DBG_RX_BCN
_rtw_memcpy(pmlmeext->tim, elems.tim, 4);
#endif
pmlmeext->dtim = elems.tim[1];
}
}
return _TRUE;
}
int rtw_get_bcn_keys(_adapter *adapter, u8 *whdr, u32 flen, struct beacon_keys *bcn_keys)
{
return _rtw_get_bcn_keys(
whdr + WLAN_HDR_A3_LEN + 10
, flen - WLAN_HDR_A3_LEN - 10
, adapter->mlmeextpriv.cur_channel, adapter
, bcn_keys);
}
int rtw_get_bcn_keys_from_bss(WLAN_BSSID_EX *bss, struct beacon_keys *bcn_keys)
{
return _rtw_get_bcn_keys(
bss->IEs + 10
, bss->IELength - 10
, bss->Configuration.DSConfig, NULL
, bcn_keys);
}
int rtw_update_bcn_keys_of_network(struct wlan_network *network)
{
network->bcn_keys_valid = rtw_get_bcn_keys_from_bss(&network->network, &network->bcn_keys);
return network->bcn_keys_valid;
}
void rtw_dump_bcn_keys(void *sel, struct beacon_keys *recv_beacon)
{
u8 ssid[IW_ESSID_MAX_SIZE + 1];
_rtw_memcpy(ssid, recv_beacon->ssid, recv_beacon->ssid_len);
ssid[recv_beacon->ssid_len] = '\0';
RTW_PRINT_SEL(sel, "ssid = %s (len = %u)\n", ssid, recv_beacon->ssid_len);
RTW_PRINT_SEL(sel, "ch = %u,%u,%u\n"
, recv_beacon->ch, recv_beacon->bw, recv_beacon->offset);
RTW_PRINT_SEL(sel, "proto_cap = 0x%02x\n", recv_beacon->proto_cap);
RTW_MAP_DUMP_SEL(sel, "rate_set = "
, recv_beacon->rate_set, recv_beacon->rate_num);
RTW_PRINT_SEL(sel, "sec = %d, group = 0x%x, pair = 0x%x, akm = 0x%08x\n"
, recv_beacon->encryp_protocol, recv_beacon->group_cipher
, recv_beacon->pairwise_cipher, recv_beacon->akm);
}
bool rtw_bcn_key_compare(struct beacon_keys *cur, struct beacon_keys *recv)
{
#define BCNKEY_VERIFY_PROTO_CAP 0
#define BCNKEY_VERIFY_WHOLE_RATE_SET 0
struct beacon_keys tmp;
bool ret = _FALSE;
if (!rtw_is_chbw_grouped(cur->ch, cur->bw, cur->offset
, recv->ch, recv->bw, recv->offset))
goto exit;
_rtw_memcpy(&tmp, cur, sizeof(tmp));
/* check fields excluding below */
tmp.ch = recv->ch;
tmp.bw = recv->bw;
tmp.offset = recv->offset;
if (!BCNKEY_VERIFY_PROTO_CAP)
tmp.proto_cap = recv->proto_cap;
if (!BCNKEY_VERIFY_WHOLE_RATE_SET) {
tmp.rate_num = recv->rate_num;
_rtw_memcpy(tmp.rate_set, recv->rate_set, 12);
}
if (_rtw_memcmp(&tmp, recv, sizeof(*recv)) == _FALSE)
goto exit;
ret = _TRUE;
exit:
return ret;
}
int rtw_check_bcn_info(ADAPTER *Adapter, u8 *pframe, u32 packet_len)
{
u8 *pbssid = GetAddr3Ptr(pframe);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
struct wlan_network *cur_network = &(Adapter->mlmepriv.cur_network);
struct beacon_keys *cur_beacon = &pmlmepriv->cur_beacon_keys;
struct beacon_keys recv_beacon;
int ret = 0;
if (is_client_associated_to_ap(Adapter) == _FALSE)
goto exit_success;
if (rtw_get_bcn_keys(Adapter, pframe, packet_len, &recv_beacon) == _FALSE)
goto exit_success; /* parsing failed => broken IE */
#ifdef DBG_RX_BCN
rtw_debug_rx_bcn(Adapter, pframe, packet_len);
#endif
/* hidden ssid, replace with current beacon ssid directly */
if (is_hidden_ssid(recv_beacon.ssid, recv_beacon.ssid_len)) {
_rtw_memcpy(recv_beacon.ssid, cur_beacon->ssid, cur_beacon->ssid_len);
recv_beacon.ssid_len = cur_beacon->ssid_len;
}
#ifdef CONFIG_BCN_CNT_CONFIRM_HDL
if (_rtw_memcmp(&recv_beacon, cur_beacon, sizeof(recv_beacon)) == _TRUE)
pmlmepriv->new_beacon_cnts = 0;
else if ((pmlmepriv->new_beacon_cnts == 0) ||
_rtw_memcmp(&recv_beacon, &pmlmepriv->new_beacon_keys, sizeof(recv_beacon)) == _FALSE) {
RTW_DBG("%s: start new beacon (seq=%d)\n", __func__, GetSequence(pframe));
if (pmlmepriv->new_beacon_cnts == 0) {
RTW_ERR("%s: cur beacon key\n", __func__);
RTW_DBG_EXPR(rtw_dump_bcn_keys(RTW_DBGDUMP, cur_beacon));
}
RTW_DBG("%s: new beacon key\n", __func__);
RTW_DBG_EXPR(rtw_dump_bcn_keys(RTW_DBGDUMP, &recv_beacon));
_rtw_memcpy(&pmlmepriv->new_beacon_keys, &recv_beacon, sizeof(recv_beacon));
pmlmepriv->new_beacon_cnts = 1;
} else {
RTW_DBG("%s: new beacon again (seq=%d)\n", __func__, GetSequence(pframe));
pmlmepriv->new_beacon_cnts++;
}
/* if counter >= max, it means beacon is changed really */
if (pmlmepriv->new_beacon_cnts >= new_bcn_max)
#else
if (_rtw_memcmp(&recv_beacon, cur_beacon, sizeof(recv_beacon)) == _FALSE)
#endif
{
RTW_INFO(FUNC_ADPT_FMT" new beacon occur!!\n", FUNC_ADPT_ARG(Adapter));
RTW_INFO(FUNC_ADPT_FMT" cur beacon key:\n", FUNC_ADPT_ARG(Adapter));
rtw_dump_bcn_keys(RTW_DBGDUMP, cur_beacon);
RTW_INFO(FUNC_ADPT_FMT" new beacon key:\n", FUNC_ADPT_ARG(Adapter));
rtw_dump_bcn_keys(RTW_DBGDUMP, &recv_beacon);
if (rtw_bcn_key_compare(cur_beacon, &recv_beacon) == _FALSE)
goto exit;
_rtw_memcpy(cur_beacon, &recv_beacon, sizeof(recv_beacon));
#ifdef CONFIG_BCN_CNT_CONFIRM_HDL
pmlmepriv->new_beacon_cnts = 0;
#endif
}
exit_success:
ret = 1;
exit:
return ret;
}
void update_beacon_info(_adapter *padapter, u8 *pframe, uint pkt_len, struct sta_info *psta)
{
unsigned int i;
unsigned int len;
PNDIS_802_11_VARIABLE_IEs pIE;
#ifdef CONFIG_TDLS
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
u8 tdls_prohibited[] = { 0x00, 0x00, 0x00, 0x00, 0x10 }; /* bit(38): TDLS_prohibited */
#endif /* CONFIG_TDLS */
len = pkt_len - (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN);
for (i = 0; i < len;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN) + i);
switch (pIE->ElementID) {
case _VENDOR_SPECIFIC_IE_:
/* to update WMM paramter set while receiving beacon */
if (_rtw_memcmp(pIE->data, WMM_PARA_OUI, 6) && pIE->Length == WLAN_WMM_LEN) /* WMM */
(WMM_param_handler(padapter, pIE)) ? report_wmm_edca_update(padapter) : 0;
break;
case _HT_EXTRA_INFO_IE_: /* HT info */
/* HT_info_handler(padapter, pIE); */
bwmode_update_check(padapter, pIE);
break;
#ifdef CONFIG_80211AC_VHT
case EID_OpModeNotification:
rtw_process_vht_op_mode_notify(padapter, pIE->data, psta);
break;
#endif /* CONFIG_80211AC_VHT */
case _ERPINFO_IE_:
ERP_IE_handler(padapter, pIE);
VCS_update(padapter, psta);
break;
#ifdef CONFIG_TDLS
case _EXT_CAP_IE_:
if (check_ap_tdls_prohibited(pIE->data, pIE->Length) == _TRUE)
ptdlsinfo->ap_prohibited = _TRUE;
if (check_ap_tdls_ch_switching_prohibited(pIE->data, pIE->Length) == _TRUE)
ptdlsinfo->ch_switch_prohibited = _TRUE;
break;
#endif /* CONFIG_TDLS */
default:
break;
}
i += (pIE->Length + 2);
}
}
#if CONFIG_DFS
void process_csa_ie(_adapter *padapter, u8 *ies, uint ies_len)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
unsigned int i;
PNDIS_802_11_VARIABLE_IEs pIE;
u8 ch = 0;
/* TODO: compare with scheduling CSA */
if (rfctl->csa_ch)
return;
for (i = 0; i + 1 < ies_len;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(ies + i);
switch (pIE->ElementID) {
case _CH_SWTICH_ANNOUNCE_:
ch = *(pIE->data + 1);
break;
default:
break;
}
i += (pIE->Length + 2);
}
if (ch != 0) {
rfctl->csa_ch = ch;
if (rtw_set_csa_cmd(padapter) != _SUCCESS)
rfctl->csa_ch = 0;
}
}
#endif /* CONFIG_DFS */
void parsing_eapol_packet(_adapter *padapter, u8 *key_payload, struct sta_info *psta, u8 trx_type)
{
struct security_priv *psecuritypriv = &(padapter->securitypriv);
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, key_data_length;
char *trx_msg = trx_type ? "send" : "recv";
hdr = (struct ieee802_1x_hdr *) key_payload;
/* WPS - eapol start packet */
if (hdr->type == 1 && hdr->length == 0) {
RTW_INFO("%s eapol start packet\n", trx_msg);
return;
}
if (hdr->type == 0) { /* WPS - eapol packet */
RTW_INFO("%s eapol packet\n", trx_msg);
return;
}
key = (struct wpa_eapol_key *) (hdr + 1);
key_info = be16_to_cpu(*((u16 *)(key->key_info)));
key_data_length = be16_to_cpu(*((u16 *)(key->key_data_length)));
if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) { /* WPA group key handshake */
if (key_info & WPA_KEY_INFO_ACK) {
RTW_PRINT("%s eapol packet - WPA Group Key 1/2\n", trx_msg);
} else {
RTW_PRINT("%s eapol packet - WPA Group Key 2/2\n", trx_msg);
/* WPA key-handshake has completed */
if (psecuritypriv->ndisauthtype == Ndis802_11AuthModeWPAPSK)
psta->state &= (~WIFI_UNDER_KEY_HANDSHAKE);
}
} else if (key_info & WPA_KEY_INFO_MIC) {
if (key_data_length == 0)
RTW_PRINT("%s eapol packet 4/4\n", trx_msg);
else if (key_info & WPA_KEY_INFO_ACK)
RTW_PRINT("%s eapol packet 3/4\n", trx_msg);
else
RTW_PRINT("%s eapol packet 2/4\n", trx_msg);
} else {
RTW_PRINT("%s eapol packet 1/4\n", trx_msg);
}
}
unsigned int is_ap_in_tkip(_adapter *padapter)
{
u32 i;
PNDIS_802_11_VARIABLE_IEs pIE;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) {
for (i = sizeof(NDIS_802_11_FIXED_IEs); i < pmlmeinfo->network.IELength;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(pmlmeinfo->network.IEs + i);
switch (pIE->ElementID) {
case _VENDOR_SPECIFIC_IE_:
if ((_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4)) && (_rtw_memcmp((pIE->data + 12), WPA_TKIP_CIPHER, 4)))
return _TRUE;
break;
case _RSN_IE_2_:
if (_rtw_memcmp((pIE->data + 8), RSN_TKIP_CIPHER, 4))
return _TRUE;
default:
break;
}
i += (pIE->Length + 2);
}
return _FALSE;
} else
return _FALSE;
}
unsigned int should_forbid_n_rate(_adapter *padapter)
{
u32 i;
PNDIS_802_11_VARIABLE_IEs pIE;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
WLAN_BSSID_EX *cur_network = &pmlmepriv->cur_network.network;
if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) {
for (i = sizeof(NDIS_802_11_FIXED_IEs); i < cur_network->IELength;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(cur_network->IEs + i);
switch (pIE->ElementID) {
case _VENDOR_SPECIFIC_IE_:
if (_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4) &&
((_rtw_memcmp((pIE->data + 12), WPA_CIPHER_SUITE_CCMP, 4)) ||
(_rtw_memcmp((pIE->data + 16), WPA_CIPHER_SUITE_CCMP, 4))))
return _FALSE;
break;
case _RSN_IE_2_:
if ((_rtw_memcmp((pIE->data + 8), RSN_CIPHER_SUITE_CCMP, 4)) ||
(_rtw_memcmp((pIE->data + 12), RSN_CIPHER_SUITE_CCMP, 4)))
return _FALSE;
default:
break;
}
i += (pIE->Length + 2);
}
return _TRUE;
} else
return _FALSE;
}
unsigned int is_ap_in_wep(_adapter *padapter)
{
u32 i;
PNDIS_802_11_VARIABLE_IEs pIE;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) {
for (i = sizeof(NDIS_802_11_FIXED_IEs); i < pmlmeinfo->network.IELength;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(pmlmeinfo->network.IEs + i);
switch (pIE->ElementID) {
case _VENDOR_SPECIFIC_IE_:
if (_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4))
return _FALSE;
break;
case _RSN_IE_2_:
return _FALSE;
default:
break;
}
i += (pIE->Length + 2);
}
return _TRUE;
} else
return _FALSE;
}
int wifirate2_ratetbl_inx(unsigned char rate);
int wifirate2_ratetbl_inx(unsigned char rate)
{
int inx = 0;
rate = rate & 0x7f;
switch (rate) {
case 54*2:
inx = 11;
break;
case 48*2:
inx = 10;
break;
case 36*2:
inx = 9;
break;
case 24*2:
inx = 8;
break;
case 18*2:
inx = 7;
break;
case 12*2:
inx = 6;
break;
case 9*2:
inx = 5;
break;
case 6*2:
inx = 4;
break;
case 11*2:
inx = 3;
break;
case 11:
inx = 2;
break;
case 2*2:
inx = 1;
break;
case 1*2:
inx = 0;
break;
}
return inx;
}
unsigned int update_basic_rate(unsigned char *ptn, unsigned int ptn_sz)
{
unsigned int i, num_of_rate;
unsigned int mask = 0;
num_of_rate = (ptn_sz > NumRates) ? NumRates : ptn_sz;
for (i = 0; i < num_of_rate; i++) {
if ((*(ptn + i)) & 0x80)
mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i));
}
return mask;
}
unsigned int update_supported_rate(unsigned char *ptn, unsigned int ptn_sz)
{
unsigned int i, num_of_rate;
unsigned int mask = 0;
num_of_rate = (ptn_sz > NumRates) ? NumRates : ptn_sz;
for (i = 0; i < num_of_rate; i++)
mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i));
return mask;
}
int support_short_GI(_adapter *padapter, struct HT_caps_element *pHT_caps, u8 bwmode)
{
unsigned char bit_offset;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (!(pmlmeinfo->HT_enable))
return _FAIL;
bit_offset = (bwmode & CHANNEL_WIDTH_40) ? 6 : 5;
if (pHT_caps->u.HT_cap_element.HT_caps_info & (0x1 << bit_offset))
return _SUCCESS;
else
return _FAIL;
}
unsigned char get_highest_rate_idx(u64 mask)
{
int i;
unsigned char rate_idx = 0;
for (i = 63; i >= 0; i--) {
if ((mask >> i) & 0x01) {
rate_idx = i;
break;
}
}
return rate_idx;
}
unsigned char get_lowest_rate_idx_ex(u64 mask, int start_bit)
{
int i;
unsigned char rate_idx = 0;
for (i = start_bit; i < 64; i++) {
if ((mask >> i) & 0x01) {
rate_idx = i;
break;
}
}
return rate_idx;
}
void Update_RA_Entry(_adapter *padapter, struct sta_info *psta)
{
rtw_hal_update_ra_mask(psta);
}
void set_sta_rate(_adapter *padapter, struct sta_info *psta)
{
/* rate adaptive */
rtw_hal_update_ra_mask(psta);
}
/* Update RRSR and Rate for USERATE */
void update_tx_basic_rate(_adapter *padapter, u8 wirelessmode)
{
NDIS_802_11_RATES_EX supported_rates;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
/* Added by Albert 2011/03/22 */
/* In the P2P mode, the driver should not support the b mode. */
/* So, the Tx packet shouldn't use the CCK rate */
if (!rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE))
return;
#endif /* CONFIG_P2P */
_rtw_memset(supported_rates, 0, NDIS_802_11_LENGTH_RATES_EX);
/* clear B mod if current channel is in 5G band, avoid tx cck rate in 5G band. */
if (pmlmeext->cur_channel > 14)
wirelessmode &= ~(WIRELESS_11B);
if ((wirelessmode & WIRELESS_11B) && (wirelessmode == WIRELESS_11B))
_rtw_memcpy(supported_rates, rtw_basic_rate_cck, 4);
else if (wirelessmode & WIRELESS_11B)
_rtw_memcpy(supported_rates, rtw_basic_rate_mix, 7);
else
_rtw_memcpy(supported_rates, rtw_basic_rate_ofdm, 3);
if (wirelessmode & WIRELESS_11B)
update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB);
else
update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB);
rtw_hal_set_hwreg(padapter, HW_VAR_BASIC_RATE, supported_rates);
}
unsigned char check_assoc_AP(u8 *pframe, uint len)
{
unsigned int i;
PNDIS_802_11_VARIABLE_IEs pIE;
for (i = sizeof(NDIS_802_11_FIXED_IEs); i < len;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + i);
switch (pIE->ElementID) {
case _VENDOR_SPECIFIC_IE_:
if ((_rtw_memcmp(pIE->data, ARTHEROS_OUI1, 3)) || (_rtw_memcmp(pIE->data, ARTHEROS_OUI2, 3))) {
RTW_INFO("link to Artheros AP\n");
return HT_IOT_PEER_ATHEROS;
} else if ((_rtw_memcmp(pIE->data, BROADCOM_OUI1, 3))
|| (_rtw_memcmp(pIE->data, BROADCOM_OUI2, 3))
|| (_rtw_memcmp(pIE->data, BROADCOM_OUI3, 3))) {
RTW_INFO("link to Broadcom AP\n");
return HT_IOT_PEER_BROADCOM;
} else if (_rtw_memcmp(pIE->data, MARVELL_OUI, 3)) {
RTW_INFO("link to Marvell AP\n");
return HT_IOT_PEER_MARVELL;
} else if (_rtw_memcmp(pIE->data, RALINK_OUI, 3)) {
RTW_INFO("link to Ralink AP\n");
return HT_IOT_PEER_RALINK;
} else if (_rtw_memcmp(pIE->data, CISCO_OUI, 3)) {
RTW_INFO("link to Cisco AP\n");
return HT_IOT_PEER_CISCO;
} else if (_rtw_memcmp(pIE->data, REALTEK_OUI, 3)) {
u32 Vender = HT_IOT_PEER_REALTEK;
if (pIE->Length >= 5) {
if (pIE->data[4] == 1) {
/* if(pIE->data[5] & RT_HT_CAP_USE_LONG_PREAMBLE) */
/* bssDesc->BssHT.RT2RT_HT_Mode |= RT_HT_CAP_USE_LONG_PREAMBLE; */
if (pIE->data[5] & RT_HT_CAP_USE_92SE) {
/* bssDesc->BssHT.RT2RT_HT_Mode |= RT_HT_CAP_USE_92SE; */
Vender = HT_IOT_PEER_REALTEK_92SE;
}
}
if (pIE->data[5] & RT_HT_CAP_USE_SOFTAP)
Vender = HT_IOT_PEER_REALTEK_SOFTAP;
if (pIE->data[4] == 2) {
if (pIE->data[6] & RT_HT_CAP_USE_JAGUAR_BCUT) {
Vender = HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP;
RTW_INFO("link to Realtek JAGUAR_BCUTAP\n");
}
if (pIE->data[6] & RT_HT_CAP_USE_JAGUAR_CCUT) {
Vender = HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP;
RTW_INFO("link to Realtek JAGUAR_CCUTAP\n");
}
}
}
RTW_INFO("link to Realtek AP\n");
return Vender;
} else if (_rtw_memcmp(pIE->data, AIRGOCAP_OUI, 3)) {
RTW_INFO("link to Airgo Cap\n");
return HT_IOT_PEER_AIRGO;
} else
break;
default:
break;
}
i += (pIE->Length + 2);
}
RTW_INFO("link to new AP\n");
return HT_IOT_PEER_UNKNOWN;
}
void get_assoc_AP_Vendor(char *vendor, u8 assoc_AP_vendor)
{
switch (assoc_AP_vendor) {
case HT_IOT_PEER_UNKNOWN:
sprintf(vendor, "%s", "unknown");
break;
case HT_IOT_PEER_REALTEK:
case HT_IOT_PEER_REALTEK_92SE:
case HT_IOT_PEER_REALTEK_SOFTAP:
case HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP:
case HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP:
sprintf(vendor, "%s", "Realtek");
break;
case HT_IOT_PEER_BROADCOM:
sprintf(vendor, "%s", "Broadcom");
break;
case HT_IOT_PEER_MARVELL:
sprintf(vendor, "%s", "Marvell");
break;
case HT_IOT_PEER_RALINK:
sprintf(vendor, "%s", "Ralink");
break;
case HT_IOT_PEER_CISCO:
sprintf(vendor, "%s", "Cisco");
break;
case HT_IOT_PEER_AIRGO:
sprintf(vendor, "%s", "Airgo");
break;
case HT_IOT_PEER_ATHEROS:
sprintf(vendor, "%s", "Atheros");
break;
default:
sprintf(vendor, "%s", "unkown");
break;
}
}
#ifdef CONFIG_RTS_FULL_BW
void rtw_parse_sta_vendor_ie_8812(_adapter *adapter, struct sta_info *sta, u8 *tlv_ies, u16 tlv_ies_len)
{
unsigned char REALTEK_OUI[] = {0x00,0xe0, 0x4c};
u8 *p;
p = rtw_get_ie_ex(tlv_ies, tlv_ies_len, WLAN_EID_VENDOR_SPECIFIC, REALTEK_OUI, 3, NULL, NULL);
if (!p)
goto exit;
else {
if(*(p+1) > 6 ) {
if(*(p+6) != 2)
goto exit;
if(*(p+8) == RT_HT_CAP_USE_JAGUAR_BCUT)
sta->vendor_8812 = TRUE;
else if (*(p+8) == RT_HT_CAP_USE_JAGUAR_CCUT)
sta->vendor_8812 = TRUE;
}
}
exit:
return;
}
#endif/*CONFIG_RTS_FULL_BW*/
#ifdef CONFIG_80211AC_VHT
void get_vht_bf_cap(u8 *pframe, uint len, struct vht_bf_cap *bf_cap)
{
unsigned int i;
PNDIS_802_11_VARIABLE_IEs pIE;
for (i = sizeof(NDIS_802_11_FIXED_IEs); i < len;) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + i);
switch (pIE->ElementID) {
case EID_VHTCapability:
bf_cap->is_mu_bfer = GET_VHT_CAPABILITY_ELE_MU_BFER(pIE->data);
bf_cap->su_sound_dim = GET_VHT_CAPABILITY_ELE_SU_BFER_SOUND_DIM_NUM(pIE->data);
break;
default:
break;
}
i += (pIE->Length + 2);
}
}
#endif
void update_capinfo(PADAPTER Adapter, u16 updateCap)
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
BOOLEAN ShortPreamble;
/* Check preamble mode, 2005.01.06, by rcnjko. */
/* Mark to update preamble value forever, 2008.03.18 by lanhsin */
/* if( pMgntInfo->RegPreambleMode == PREAMBLE_AUTO ) */
{
if (updateCap & cShortPreamble) {
/* Short Preamble */
if (pmlmeinfo->preamble_mode != PREAMBLE_SHORT) { /* PREAMBLE_LONG or PREAMBLE_AUTO */
ShortPreamble = _TRUE;
pmlmeinfo->preamble_mode = PREAMBLE_SHORT;
rtw_hal_set_hwreg(Adapter, HW_VAR_ACK_PREAMBLE, (u8 *)&ShortPreamble);
}
} else {
/* Long Preamble */
if (pmlmeinfo->preamble_mode != PREAMBLE_LONG) { /* PREAMBLE_SHORT or PREAMBLE_AUTO */
ShortPreamble = _FALSE;
pmlmeinfo->preamble_mode = PREAMBLE_LONG;
rtw_hal_set_hwreg(Adapter, HW_VAR_ACK_PREAMBLE, (u8 *)&ShortPreamble);
}
}
}
if (updateCap & cIBSS) {
/* Filen: See 802.11-2007 p.91 */
pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME;
} else {
/* Filen: See 802.11-2007 p.90 */
if (pmlmeext->cur_wireless_mode & (WIRELESS_11_24N | WIRELESS_11A | WIRELESS_11_5N | WIRELESS_11AC))
pmlmeinfo->slotTime = SHORT_SLOT_TIME;
else if (pmlmeext->cur_wireless_mode & (WIRELESS_11G)) {
if ((updateCap & cShortSlotTime) /* && (!(pMgntInfo->pHTInfo->RT2RT_HT_Mode & RT_HT_CAP_USE_LONG_PREAMBLE)) */) {
/* Short Slot Time */
pmlmeinfo->slotTime = SHORT_SLOT_TIME;
} else {
/* Long Slot Time */
pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME;
}
} else {
/* B Mode */
pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME;
}
}
rtw_hal_set_hwreg(Adapter, HW_VAR_SLOT_TIME, &pmlmeinfo->slotTime);
}
/*
* set adapter.mlmeextpriv.mlmext_info.HT_enable
* set adapter.mlmeextpriv.cur_wireless_mode
* set SIFS register
* set mgmt tx rate
*/
void update_wireless_mode(_adapter *padapter)
{
int ratelen, network_type = 0;
u32 SIFS_Timer;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
unsigned char *rate = cur_network->SupportedRates;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif /* CONFIG_P2P */
ratelen = rtw_get_rateset_len(cur_network->SupportedRates);
if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable))
pmlmeinfo->HT_enable = 1;
if (pmlmeext->cur_channel > 14) {
if (pmlmeinfo->VHT_enable)
network_type = WIRELESS_11AC;
else if (pmlmeinfo->HT_enable)
network_type = WIRELESS_11_5N;
network_type |= WIRELESS_11A;
} else {
if (pmlmeinfo->VHT_enable)
network_type = WIRELESS_11AC;
else if (pmlmeinfo->HT_enable)
network_type = WIRELESS_11_24N;
if ((cckratesonly_included(rate, ratelen)) == _TRUE)
network_type |= WIRELESS_11B;
else if ((cckrates_included(rate, ratelen)) == _TRUE)
network_type |= WIRELESS_11BG;
else
network_type |= WIRELESS_11G;
}
pmlmeext->cur_wireless_mode = network_type & padapter->registrypriv.wireless_mode;
/* RTW_INFO("network_type=%02x, padapter->registrypriv.wireless_mode=%02x\n", network_type, padapter->registrypriv.wireless_mode); */
#ifndef RTW_HALMAC
/* HALMAC IC do not set HW_VAR_RESP_SIFS here */
#if 0
if ((pmlmeext->cur_wireless_mode == WIRELESS_11G) ||
(pmlmeext->cur_wireless_mode == WIRELESS_11BG)) /* WIRELESS_MODE_G) */
SIFS_Timer = 0x0a0a;/* CCK */
else
SIFS_Timer = 0x0e0e;/* pHalData->SifsTime; //OFDM */
#endif
SIFS_Timer = 0x0a0a0808; /* 0x0808->for CCK, 0x0a0a->for OFDM
* change this value if having IOT issues. */
rtw_hal_set_hwreg(padapter, HW_VAR_RESP_SIFS, (u8 *)&SIFS_Timer);
#endif
rtw_hal_set_hwreg(padapter, HW_VAR_WIRELESS_MODE, (u8 *)&(pmlmeext->cur_wireless_mode));
if ((pmlmeext->cur_wireless_mode & WIRELESS_11B)
#ifdef CONFIG_P2P
&& (rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)
#ifdef CONFIG_IOCTL_CFG80211
|| !rtw_cfg80211_iface_has_p2p_group_cap(padapter)
#endif
)
#endif
)
update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB);
else
update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB);
}
void fire_write_MAC_cmd(_adapter *padapter, unsigned int addr, unsigned int value);
void fire_write_MAC_cmd(_adapter *padapter, unsigned int addr, unsigned int value)
{
#if 0
struct cmd_obj *ph2c;
struct reg_rw_parm *pwriteMacPara;
struct cmd_priv *pcmdpriv = &(padapter->cmdpriv);
ph2c = (struct cmd_obj *)rtw_zmalloc(sizeof(struct cmd_obj));
if (ph2c == NULL)
return;
pwriteMacPara = (struct reg_rw_parm *)rtw_malloc(sizeof(struct reg_rw_parm));
if (pwriteMacPara == NULL) {
rtw_mfree((unsigned char *)ph2c, sizeof(struct cmd_obj));
return;
}
pwriteMacPara->rw = 1;
pwriteMacPara->addr = addr;
pwriteMacPara->value = value;
init_h2fwcmd_w_parm_no_rsp(ph2c, pwriteMacPara, GEN_CMD_CODE(_Write_MACREG));
rtw_enqueue_cmd(pcmdpriv, ph2c);
#endif
}
void update_sta_basic_rate(struct sta_info *psta, u8 wireless_mode)
{
if (IsSupportedTxCCK(wireless_mode)) {
/* Only B, B/G, and B/G/N AP could use CCK rate */
_rtw_memcpy(psta->bssrateset, rtw_basic_rate_cck, 4);
psta->bssratelen = 4;
} else {
_rtw_memcpy(psta->bssrateset, rtw_basic_rate_ofdm, 3);
psta->bssratelen = 3;
}
}
int rtw_ies_get_supported_rate(u8 *ies, uint ies_len, u8 *rate_set, u8 *rate_num)
{
u8 *ie, *p;
unsigned int ie_len;
int i, j;
struct support_rate_handler support_rate_tbl[] = {
{IEEE80211_CCK_RATE_1MB, _FALSE, _FALSE},
{IEEE80211_CCK_RATE_2MB, _FALSE, _FALSE},
{IEEE80211_CCK_RATE_5MB, _FALSE, _FALSE},
{IEEE80211_CCK_RATE_11MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_6MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_9MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_12MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_18MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_24MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_36MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_48MB, _FALSE, _FALSE},
{IEEE80211_OFDM_RATE_54MB, _FALSE, _FALSE},
};
if (!rate_set || !rate_num)
return _FALSE;
*rate_num = 0;
ie = rtw_get_ie(ies, _SUPPORTEDRATES_IE_, &ie_len, ies_len);
if (ie == NULL)
goto ext_rate;
/* get valid supported rates */
for (i = 0; i < 12; i++) {
p = ie + 2;
for (j = 0; j < ie_len; j++) {
if ((*p & ~BIT(7)) == support_rate_tbl[i].rate){
support_rate_tbl[i].existence = _TRUE;
if ((*p) & BIT(7))
support_rate_tbl[i].basic = _TRUE;
}
p++;
}
}
ext_rate:
ie = rtw_get_ie(ies, _EXT_SUPPORTEDRATES_IE_, &ie_len, ies_len);
if (ie) {
/* get valid extended supported rates */
for (i = 0; i < 12; i++) {
p = ie + 2;
for (j = 0; j < ie_len; j++) {
if ((*p & ~BIT(7)) == support_rate_tbl[i].rate){
support_rate_tbl[i].existence = _TRUE;
if ((*p) & BIT(7))
support_rate_tbl[i].basic = _TRUE;
}
p++;
}
}
}
for (i = 0; i < 12; i++){
if (support_rate_tbl[i].existence){
if (support_rate_tbl[i].basic)
rate_set[*rate_num] = support_rate_tbl[i].rate | IEEE80211_BASIC_RATE_MASK;
else
rate_set[*rate_num] = support_rate_tbl[i].rate;
*rate_num += 1;
}
}
if (*rate_num == 0)
return _FAIL;
if (0) {
int i;
for (i = 0; i < *rate_num; i++)
RTW_INFO("rate:0x%02x\n", *(rate_set + i));
}
return _SUCCESS;
}
void process_addba_req(_adapter *padapter, u8 *paddba_req, u8 *addr)
{
struct sta_info *psta;
u16 tid, start_seq, param;
struct sta_priv *pstapriv = &padapter->stapriv;
struct ADDBA_request *preq = (struct ADDBA_request *)paddba_req;
u8 size, accept = _FALSE;
psta = rtw_get_stainfo(pstapriv, addr);
if (!psta)
goto exit;
start_seq = le16_to_cpu(preq->BA_starting_seqctrl) >> 4;
param = le16_to_cpu(preq->BA_para_set);
tid = (param >> 2) & 0x0f;
accept = rtw_rx_ampdu_is_accept(padapter);
if (padapter->fix_rx_ampdu_size != RX_AMPDU_SIZE_INVALID)
size = padapter->fix_rx_ampdu_size;
else {
size = rtw_rx_ampdu_size(padapter);
size = rtw_min(size, rx_ampdu_size_sta_limit(padapter, psta));
}
if (accept == _TRUE)
rtw_addbarsp_cmd(padapter, addr, tid, 0, size, start_seq);
else
rtw_addbarsp_cmd(padapter, addr, tid, 37, size, start_seq); /* reject ADDBA Req */
exit:
return;
}
void rtw_process_bar_frame(_adapter *padapter, union recv_frame *precv_frame)
{
struct sta_priv *pstapriv = &padapter->stapriv;
u8 *pframe = precv_frame->u.hdr.rx_data;
struct sta_info *psta = NULL;
struct recv_reorder_ctrl *preorder_ctrl = NULL;
u8 tid = 0;
u16 start_seq=0;
psta = rtw_get_stainfo(pstapriv, get_addr2_ptr(pframe));
if (psta == NULL)
goto exit;
tid = ((cpu_to_le16((*(u16 *)(pframe + 16))) & 0xf000) >> 12);
preorder_ctrl = &psta->recvreorder_ctrl[tid];
start_seq = ((cpu_to_le16(*(u16 *)(pframe + 18))) >> 4);
preorder_ctrl->indicate_seq = start_seq;
/* for Debug use */
if (0)
RTW_INFO(FUNC_ADPT_FMT" tid=%d, start_seq=%d\n", FUNC_ADPT_ARG(padapter), tid, start_seq);
exit:
return;
}
void update_TSF(struct mlme_ext_priv *pmlmeext, u8 *pframe, uint len)
{
u8 *pIE;
u32 *pbuf;
pIE = pframe + sizeof(struct rtw_ieee80211_hdr_3addr);
pbuf = (u32 *)pIE;
pmlmeext->TSFValue = le32_to_cpu(*(pbuf + 1));
pmlmeext->TSFValue = pmlmeext->TSFValue << 32;
pmlmeext->TSFValue |= le32_to_cpu(*pbuf);
}
void correct_TSF(_adapter *padapter, u8 mlme_state)
{
u8 m_state = mlme_state;
rtw_hal_set_hwreg(padapter, HW_VAR_CORRECT_TSF, (u8 *)&m_state);
}
#ifdef CONFIG_BCN_RECV_TIME
/* calculate beacon receiving time
1.RxBCNTime(CCK_1M) = [192us(preamble)] + [length of beacon(byte)*8us] + [10us]
2.RxBCNTime(OFDM_6M) = [8us(S) + 8us(L) + 4us(L-SIG)] + [(length of beacon(byte)/3 + 1] *4us] + [10us]
*/
inline u16 _rx_bcn_time_calculate(uint bcn_len, u8 data_rate)
{
u16 rx_bcn_time = 0;/*us*/
if (data_rate == DESC_RATE1M)
rx_bcn_time = 192 + bcn_len * 8 + 10;
else if(data_rate == DESC_RATE6M)
rx_bcn_time = 8 + 8 + 4 + (bcn_len /3 + 1) * 4 + 10;
/*
else
RTW_ERR("%s invalid data rate(0x%02x)\n", __func__, data_rate);
*/
return rx_bcn_time;
}
void rtw_rx_bcn_time_update(_adapter *adapter, uint bcn_len, u8 data_rate)
{
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
pmlmeext->bcn_rx_time = _rx_bcn_time_calculate(bcn_len, data_rate);
}
#endif
void beacon_timing_control(_adapter *padapter)
{
rtw_hal_bcn_related_reg_setting(padapter);
}
void dump_macid_map(void *sel, struct macid_bmp *map, u8 max_num)
{
RTW_PRINT_SEL(sel, "0x%08x\n", map->m0);
#if (MACID_NUM_SW_LIMIT > 32)
if (max_num && max_num > 32)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m1);
#endif
#if (MACID_NUM_SW_LIMIT > 64)
if (max_num && max_num > 64)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m2);
#endif
#if (MACID_NUM_SW_LIMIT > 96)
if (max_num && max_num > 96)
RTW_PRINT_SEL(sel, "0x%08x\n", map->m3);
#endif
}
inline bool rtw_macid_is_set(struct macid_bmp *map, u8 id)
{
if (id < 32)
return map->m0 & BIT(id);
#if (MACID_NUM_SW_LIMIT > 32)
else if (id < 64)
return map->m1 & BIT(id - 32);
#endif
#if (MACID_NUM_SW_LIMIT > 64)
else if (id < 96)
return map->m2 & BIT(id - 64);
#endif
#if (MACID_NUM_SW_LIMIT > 96)
else if (id < 128)
return map->m3 & BIT(id - 96);
#endif
else
rtw_warn_on(1);
return 0;
}
inline void rtw_macid_map_set(struct macid_bmp *map, u8 id)
{
if (id < 32)
map->m0 |= BIT(id);
#if (MACID_NUM_SW_LIMIT > 32)
else if (id < 64)
map->m1 |= BIT(id - 32);
#endif
#if (MACID_NUM_SW_LIMIT > 64)
else if (id < 96)
map->m2 |= BIT(id - 64);
#endif
#if (MACID_NUM_SW_LIMIT > 96)
else if (id < 128)
map->m3 |= BIT(id - 96);
#endif
else
rtw_warn_on(1);
}
inline void rtw_macid_map_clr(struct macid_bmp *map, u8 id)
{
if (id < 32)
map->m0 &= ~BIT(id);
#if (MACID_NUM_SW_LIMIT > 32)
else if (id < 64)
map->m1 &= ~BIT(id - 32);
#endif
#if (MACID_NUM_SW_LIMIT > 64)
else if (id < 96)
map->m2 &= ~BIT(id - 64);
#endif
#if (MACID_NUM_SW_LIMIT > 96)
else if (id < 128)
map->m3 &= ~BIT(id - 96);
#endif
else
rtw_warn_on(1);
}
inline bool rtw_macid_is_used(struct macid_ctl_t *macid_ctl, u8 id)
{
return rtw_macid_is_set(&macid_ctl->used, id);
}
inline bool rtw_macid_is_bmc(struct macid_ctl_t *macid_ctl, u8 id)
{
return rtw_macid_is_set(&macid_ctl->bmc, id);
}
inline u8 rtw_macid_get_iface_bmp(struct macid_ctl_t *macid_ctl, u8 id)
{
int i;
u8 iface_bmp = 0;
for (i = 0; i < CONFIG_IFACE_NUMBER; i++) {
if (rtw_macid_is_set(&macid_ctl->if_g[i], id))
iface_bmp |= BIT(i);
}
return iface_bmp;
}
inline bool rtw_macid_is_iface_shared(struct macid_ctl_t *macid_ctl, u8 id)
{
#if CONFIG_IFACE_NUMBER >= 2
int i;
u8 iface_bmp = 0;
for (i = 0; i < CONFIG_IFACE_NUMBER; i++) {
if (rtw_macid_is_set(&macid_ctl->if_g[i], id)) {
if (iface_bmp)
return 1;
iface_bmp |= BIT(i);
}
}
#endif
return 0;
}
inline bool rtw_macid_is_iface_specific(struct macid_ctl_t *macid_ctl, u8 id, _adapter *adapter)
{
int i;
u8 iface_bmp = 0;
for (i = 0; i < CONFIG_IFACE_NUMBER; i++) {
if (rtw_macid_is_set(&macid_ctl->if_g[i], id)) {
if (iface_bmp || i != adapter->iface_id)
return 0;
iface_bmp |= BIT(i);
}
}
return iface_bmp ? 1 : 0;
}
inline s8 rtw_macid_get_ch_g(struct macid_ctl_t *macid_ctl, u8 id)
{
int i;
for (i = 0; i < 2; i++) {
if (rtw_macid_is_set(&macid_ctl->ch_g[i], id))
return i;
}
return -1;
}
/*Record bc's mac-id and sec-cam-id*/
inline void rtw_iface_bcmc_id_set(_adapter *padapter, u8 mac_id)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
macid_ctl->iface_bmc[padapter->iface_id] = mac_id;
}
inline u8 rtw_iface_bcmc_id_get(_adapter *padapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
return macid_ctl->iface_bmc[padapter->iface_id];
}
#if defined(DBG_CONFIG_ERROR_RESET) && defined(CONFIG_CONCURRENT_MODE)
void rtw_iface_bcmc_sec_cam_map_restore(_adapter *adapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct cam_ctl_t *cam_ctl = dvobj_to_sec_camctl(dvobj);
int cam_id = -1;
cam_id = rtw_iface_bcmc_id_get(adapter);
if (cam_id != INVALID_SEC_MAC_CAM_ID)
rtw_sec_cam_map_set(&cam_ctl->used, cam_id);
}
#endif
void rtw_alloc_macid(_adapter *padapter, struct sta_info *psta)
{
int i;
_irqL irqL;
u8 bc_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
struct macid_bmp *used_map = &macid_ctl->used;
/* static u8 last_id = 0; for testing */
u8 last_id = 0;
u8 is_bc_sta = _FALSE;
if (_rtw_memcmp(psta->cmn.mac_addr, adapter_mac_addr(padapter), ETH_ALEN)) {
psta->cmn.mac_id = macid_ctl->num;
return;
}
if (_rtw_memcmp(psta->cmn.mac_addr, bc_addr, ETH_ALEN)) {
is_bc_sta = _TRUE;
rtw_iface_bcmc_id_set(padapter, INVALID_SEC_MAC_CAM_ID); /*init default value*/
}
if (is_bc_sta
#ifdef CONFIG_CONCURRENT_MODE
&& (MLME_IS_STA(padapter) || MLME_IS_NULL(padapter))
#endif
) {
/* STA mode have no BMC data TX, shared with this macid */
/* When non-concurrent, only one BMC data TX is used, shared with this macid */
/* TODO: When concurrent, non-security BMC data TX may use this, but will not control by specific macid sleep */
i = RTW_DEFAULT_MGMT_MACID;
goto assigned;
}
_enter_critical_bh(&macid_ctl->lock, &irqL);
for (i = last_id; i < macid_ctl->num; i++) {
#ifdef CONFIG_MCC_MODE
/* macid 0/1 reserve for mcc for mgnt queue macid */
if (MCC_EN(padapter)) {
if (i == MCC_ROLE_STA_GC_MGMT_QUEUE_MACID)
continue;
if (i == MCC_ROLE_SOFTAP_GO_MGMT_QUEUE_MACID)
continue;
}
#endif /* CONFIG_MCC_MODE */
#ifdef CONFIG_CONCURRENT_MODE
/* for BMC data TX with force camid */
if (is_bc_sta && rtw_sec_camid_is_used(dvobj_to_sec_camctl(dvobj), i))
continue;
#endif
if (!rtw_macid_is_used(macid_ctl, i))
break;
}
if (i < macid_ctl->num) {
rtw_macid_map_set(used_map, i);
#ifdef CONFIG_CONCURRENT_MODE
/* for BMC data TX with force camid */
if (is_bc_sta) {
struct cam_ctl_t *cam_ctl = dvobj_to_sec_camctl(dvobj);
rtw_macid_map_set(&macid_ctl->bmc, i);
rtw_iface_bcmc_id_set(padapter, i);
rtw_sec_cam_map_set(&cam_ctl->used, i);
}
#endif
rtw_macid_map_set(&macid_ctl->if_g[padapter->iface_id], i);
macid_ctl->sta[i] = psta;
/* TODO ch_g? */
last_id++;
last_id %= macid_ctl->num;
}
_exit_critical_bh(&macid_ctl->lock, &irqL);
if (i >= macid_ctl->num) {
psta->cmn.mac_id = macid_ctl->num;
RTW_ERR(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" no available macid\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1, MAC_ARG(psta->cmn.mac_addr));
rtw_warn_on(1);
goto exit;
} else
goto assigned;
assigned:
psta->cmn.mac_id = i;
RTW_INFO(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" macid:%u\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1, MAC_ARG(psta->cmn.mac_addr), psta->cmn.mac_id);
exit:
return;
}
void rtw_release_macid(_adapter *padapter, struct sta_info *psta)
{
_irqL irqL;
u8 bc_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
u8 ifbmp;
int i;
if (_rtw_memcmp(psta->cmn.mac_addr, adapter_mac_addr(padapter), ETH_ALEN))
goto exit;
if (psta->cmn.mac_id >= macid_ctl->num) {
RTW_WARN(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" macid:%u not valid\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1
, MAC_ARG(psta->cmn.mac_addr), psta->cmn.mac_id);
rtw_warn_on(1);
goto exit;
}
if (psta->cmn.mac_id == RTW_DEFAULT_MGMT_MACID)
goto msg;
_enter_critical_bh(&macid_ctl->lock, &irqL);
if (!rtw_macid_is_used(macid_ctl, psta->cmn.mac_id)) {
RTW_WARN(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" macid:%u not used\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1
, MAC_ARG(psta->cmn.mac_addr), psta->cmn.mac_id);
_exit_critical_bh(&macid_ctl->lock, &irqL);
rtw_warn_on(1);
goto exit;
}
ifbmp = rtw_macid_get_iface_bmp(macid_ctl, psta->cmn.mac_id);
if (!(ifbmp & BIT(padapter->iface_id))) {
RTW_WARN(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" macid:%u not used by self\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1
, MAC_ARG(psta->cmn.mac_addr), psta->cmn.mac_id);
_exit_critical_bh(&macid_ctl->lock, &irqL);
rtw_warn_on(1);
goto exit;
}
if (_rtw_memcmp(psta->cmn.mac_addr, bc_addr, ETH_ALEN)) {
struct cam_ctl_t *cam_ctl = dvobj_to_sec_camctl(dvobj);
u8 id = rtw_iface_bcmc_id_get(padapter);
if ((id != INVALID_SEC_MAC_CAM_ID) && (id < cam_ctl->num))
rtw_sec_cam_map_clr(&cam_ctl->used, id);
rtw_iface_bcmc_id_set(padapter, INVALID_SEC_MAC_CAM_ID);
}
rtw_macid_map_clr(&macid_ctl->if_g[padapter->iface_id], psta->cmn.mac_id);
ifbmp &= ~BIT(padapter->iface_id);
if (!ifbmp) { /* only used by self */
rtw_macid_map_clr(&macid_ctl->used, psta->cmn.mac_id);
rtw_macid_map_clr(&macid_ctl->bmc, psta->cmn.mac_id);
for (i = 0; i < 2; i++)
rtw_macid_map_clr(&macid_ctl->ch_g[i], psta->cmn.mac_id);
macid_ctl->sta[psta->cmn.mac_id] = NULL;
}
_exit_critical_bh(&macid_ctl->lock, &irqL);
msg:
RTW_INFO(FUNC_ADPT_FMT" if%u, mac_addr:"MAC_FMT" macid:%u\n"
, FUNC_ADPT_ARG(padapter), padapter->iface_id + 1
, MAC_ARG(psta->cmn.mac_addr), psta->cmn.mac_id
);
exit:
psta->cmn.mac_id = macid_ctl->num;
}
/* For 8188E RA */
u8 rtw_search_max_mac_id(_adapter *padapter)
{
u8 max_mac_id = 0;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
int i;
_irqL irqL;
/* TODO: Only search for connected macid? */
_enter_critical_bh(&macid_ctl->lock, &irqL);
for (i = (macid_ctl->num - 1); i > 0 ; i--) {
if (rtw_macid_is_used(macid_ctl, i))
break;
}
_exit_critical_bh(&macid_ctl->lock, &irqL);
max_mac_id = i;
return max_mac_id;
}
inline u8 rtw_macid_ctl_set_h2c_msr(struct macid_ctl_t *macid_ctl, u8 id, u8 h2c_msr)
{
u8 op_num_change_bmp = 0;
if (id >= macid_ctl->num) {
rtw_warn_on(1);
goto exit;
}
if (GET_H2CCMD_MSRRPT_PARM_OPMODE(&macid_ctl->h2c_msr[id])
&& !GET_H2CCMD_MSRRPT_PARM_OPMODE(&h2c_msr)
) {
u8 role = GET_H2CCMD_MSRRPT_PARM_ROLE(&macid_ctl->h2c_msr[id]);
if (role < H2C_MSR_ROLE_MAX) {
macid_ctl->op_num[role]--;
op_num_change_bmp |= BIT(role);
}
} else if (!GET_H2CCMD_MSRRPT_PARM_OPMODE(&macid_ctl->h2c_msr[id])
&& GET_H2CCMD_MSRRPT_PARM_OPMODE(&h2c_msr)
) {
u8 role = GET_H2CCMD_MSRRPT_PARM_ROLE(&h2c_msr);
if (role < H2C_MSR_ROLE_MAX) {
macid_ctl->op_num[role]++;
op_num_change_bmp |= BIT(role);
}
}
macid_ctl->h2c_msr[id] = h2c_msr;
if (0)
RTW_INFO("macid:%u, h2c_msr:"H2C_MSR_FMT"\n", id, H2C_MSR_ARG(&macid_ctl->h2c_msr[id]));
exit:
return op_num_change_bmp;
}
inline void rtw_macid_ctl_set_bw(struct macid_ctl_t *macid_ctl, u8 id, u8 bw)
{
if (id >= macid_ctl->num) {
rtw_warn_on(1);
return;
}
macid_ctl->bw[id] = bw;
if (0)
RTW_INFO("macid:%u, bw:%s\n", id, ch_width_str(macid_ctl->bw[id]));
}
inline void rtw_macid_ctl_set_vht_en(struct macid_ctl_t *macid_ctl, u8 id, u8 en)
{
if (id >= macid_ctl->num) {
rtw_warn_on(1);
return;
}
macid_ctl->vht_en[id] = en;
if (0)
RTW_INFO("macid:%u, vht_en:%u\n", id, macid_ctl->vht_en[id]);
}
inline void rtw_macid_ctl_set_rate_bmp0(struct macid_ctl_t *macid_ctl, u8 id, u32 bmp)
{
if (id >= macid_ctl->num) {
rtw_warn_on(1);
return;
}
macid_ctl->rate_bmp0[id] = bmp;
if (0)
RTW_INFO("macid:%u, rate_bmp0:0x%08X\n", id, macid_ctl->rate_bmp0[id]);
}
inline void rtw_macid_ctl_set_rate_bmp1(struct macid_ctl_t *macid_ctl, u8 id, u32 bmp)
{
if (id >= macid_ctl->num) {
rtw_warn_on(1);
return;
}
macid_ctl->rate_bmp1[id] = bmp;
if (0)
RTW_INFO("macid:%u, rate_bmp1:0x%08X\n", id, macid_ctl->rate_bmp1[id]);
}
#ifdef CONFIG_PROTSEL_MACSLEEP
inline void rtw_macid_ctl_init_sleep_reg(struct macid_ctl_t *macid_ctl, u16 reg_ctrl, u16 reg_info)
{
macid_ctl->reg_sleep_ctrl = reg_ctrl;
macid_ctl->reg_sleep_info = reg_info;
}
#else
inline void rtw_macid_ctl_init_sleep_reg(struct macid_ctl_t *macid_ctl, u16 m0, u16 m1, u16 m2, u16 m3)
{
macid_ctl->reg_sleep_m0 = m0;
#if (MACID_NUM_SW_LIMIT > 32)
macid_ctl->reg_sleep_m1 = m1;
#endif
#if (MACID_NUM_SW_LIMIT > 64)
macid_ctl->reg_sleep_m2 = m2;
#endif
#if (MACID_NUM_SW_LIMIT > 96)
macid_ctl->reg_sleep_m3 = m3;
#endif
}
#endif
inline void rtw_macid_ctl_init(struct macid_ctl_t *macid_ctl)
{
int i;
u8 id = RTW_DEFAULT_MGMT_MACID;
rtw_macid_map_set(&macid_ctl->used, id);
rtw_macid_map_set(&macid_ctl->bmc, id);
for (i = 0; i < CONFIG_IFACE_NUMBER; i++)
rtw_macid_map_set(&macid_ctl->if_g[i], id);
macid_ctl->sta[id] = NULL;
_rtw_spinlock_init(&macid_ctl->lock);
}
inline void rtw_macid_ctl_deinit(struct macid_ctl_t *macid_ctl)
{
_rtw_spinlock_free(&macid_ctl->lock);
}
inline bool rtw_bmp_is_set(const u8 *bmp, u8 bmp_len, u8 id)
{
if (id / 8 >= bmp_len)
return 0;
return bmp[id / 8] & BIT(id % 8);
}
inline void rtw_bmp_set(u8 *bmp, u8 bmp_len, u8 id)
{
if (id / 8 < bmp_len)
bmp[id / 8] |= BIT(id % 8);
}
inline void rtw_bmp_clear(u8 *bmp, u8 bmp_len, u8 id)
{
if (id / 8 < bmp_len)
bmp[id / 8] &= ~BIT(id % 8);
}
inline bool rtw_bmp_not_empty(const u8 *bmp, u8 bmp_len)
{
int i;
for (i = 0; i < bmp_len; i++) {
if (bmp[i])
return 1;
}
return 0;
}
inline bool rtw_bmp_not_empty_exclude_bit0(const u8 *bmp, u8 bmp_len)
{
int i;
for (i = 0; i < bmp_len; i++) {
if (i == 0) {
if (bmp[i] & 0xFE)
return 1;
} else {
if (bmp[i])
return 1;
}
}
return 0;
}
#ifdef CONFIG_AP_MODE
/* Check the id be set or not in map , if yes , return a none zero value*/
bool rtw_tim_map_is_set(_adapter *padapter, const u8 *map, u8 id)
{
return rtw_bmp_is_set(map, padapter->stapriv.aid_bmp_len, id);
}
/* Set the id into map array*/
void rtw_tim_map_set(_adapter *padapter, u8 *map, u8 id)
{
rtw_bmp_set(map, padapter->stapriv.aid_bmp_len, id);
}
/* Clear the id from map array*/
void rtw_tim_map_clear(_adapter *padapter, u8 *map, u8 id)
{
rtw_bmp_clear(map, padapter->stapriv.aid_bmp_len, id);
}
/* Check have anyone bit be set , if yes return true*/
bool rtw_tim_map_anyone_be_set(_adapter *padapter, const u8 *map)
{
return rtw_bmp_not_empty(map, padapter->stapriv.aid_bmp_len);
}
/* Check have anyone bit be set exclude bit0 , if yes return true*/
bool rtw_tim_map_anyone_be_set_exclude_aid0(_adapter *padapter, const u8 *map)
{
return rtw_bmp_not_empty_exclude_bit0(map, padapter->stapriv.aid_bmp_len);
}
#endif /* CONFIG_AP_MODE */
#if 0
unsigned int setup_beacon_frame(_adapter *padapter, unsigned char *beacon_frame)
{
unsigned short ATIMWindow;
unsigned char *pframe;
struct tx_desc *ptxdesc;
struct rtw_ieee80211_hdr *pwlanhdr;
unsigned short *fctrl;
unsigned int rate_len, len = 0;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
_rtw_memset(beacon_frame, 0, 256);
pframe = beacon_frame + TXDESC_SIZE;
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
_rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN);
_rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN);
set_frame_sub_type(pframe, WIFI_BEACON);
pframe += sizeof(struct rtw_ieee80211_hdr_3addr);
len = sizeof(struct rtw_ieee80211_hdr_3addr);
/* timestamp will be inserted by hardware */
pframe += 8;
len += 8;
/* beacon interval: 2 bytes */
_rtw_memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2);
pframe += 2;
len += 2;
/* capability info: 2 bytes */
_rtw_memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2);
pframe += 2;
len += 2;
/* SSID */
pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &len);
/* supported rates... */
rate_len = rtw_get_rateset_len(cur_network->SupportedRates);
pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8) ? 8 : rate_len), cur_network->SupportedRates, &len);
/* DS parameter set */
pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &len);
/* IBSS Parameter Set... */
/* ATIMWindow = cur->Configuration.ATIMWindow; */
ATIMWindow = 0;
pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &len);
/* todo: ERP IE */
/* EXTERNDED SUPPORTED RATE */
if (rate_len > 8)
pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &len);
if ((len + TXDESC_SIZE) > 256) {
/* RTW_INFO("marc: beacon frame too large\n"); */
return 0;
}
/* fill the tx descriptor */
ptxdesc = (struct tx_desc *)beacon_frame;
/* offset 0 */
ptxdesc->txdw0 |= cpu_to_le32(len & 0x0000ffff);
ptxdesc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) << OFFSET_SHT) & 0x00ff0000); /* default = 32 bytes for TX Desc */
/* offset 4 */
ptxdesc->txdw1 |= cpu_to_le32((0x10 << QSEL_SHT) & 0x00001f00);
/* offset 8 */
ptxdesc->txdw2 |= cpu_to_le32(BMC);
ptxdesc->txdw2 |= cpu_to_le32(BK);
/* offset 16 */
ptxdesc->txdw4 = 0x80000000;
/* offset 20 */
ptxdesc->txdw5 = 0x00000000; /* 1M */
return len + TXDESC_SIZE;
}
#endif
_adapter *dvobj_get_port0_adapter(struct dvobj_priv *dvobj)
{
_adapter *port0_iface = NULL;
int i;
for (i = 0; i < dvobj->iface_nums; i++) {
if (get_hw_port(dvobj->padapters[i]) == HW_PORT0)
break;
}
if (i < 0 || i >= dvobj->iface_nums)
rtw_warn_on(1);
else
port0_iface = dvobj->padapters[i];
return port0_iface;
}
_adapter *dvobj_get_unregisterd_adapter(struct dvobj_priv *dvobj)
{
_adapter *adapter = NULL;
int i;
for (i = 0; i < dvobj->iface_nums; i++) {
if (dvobj->padapters[i]->registered == 0)
break;
}
if (i < dvobj->iface_nums)
adapter = dvobj->padapters[i];
return adapter;
}
_adapter *dvobj_get_adapter_by_addr(struct dvobj_priv *dvobj, u8 *addr)
{
_adapter *adapter = NULL;
int i;
for (i = 0; i < dvobj->iface_nums; i++) {
if (_rtw_memcmp(dvobj->padapters[i]->mac_addr, addr, ETH_ALEN) == _TRUE)
break;
}
if (i < dvobj->iface_nums)
adapter = dvobj->padapters[i];
return adapter;
}
#ifdef CONFIG_WOWLAN
bool rtw_wowlan_parser_pattern_cmd(u8 *input, char *pattern,
int *pattern_len, char *bit_mask)
{
char *cp = NULL;
size_t len = 0;
int pos = 0, mask_pos = 0, res = 0;
/* To get the pattern string after "=", when we use :
* iwpriv wlanX pattern=XX:XX:..:XX
*/
cp = strchr(input, '=');
if (cp) {
*cp = 0;
cp++;
input = cp;
}
/* To take off the newline character '\n'(0x0a) at the end of pattern string,
* when we use echo xxxx > /proc/xxxx
*/
cp = strchr(input, '\n');
if (cp)
*cp = 0;
while (input) {
cp = strsep((char **)(&input), ":");
if (bit_mask && (strcmp(cp, "-") == 0 ||
strcmp(cp, "xx") == 0 ||
strcmp(cp, "--") == 0)) {
/* skip this byte and leave mask bit unset */
} else {
u8 hex;
if (strlen(cp) != 2) {
RTW_ERR("%s:[ERROR] hex len != 2, input=[%s]\n",
__func__, cp);
goto error;
}
if (hexstr2bin(cp, &hex, 1) < 0) {
RTW_ERR("%s:[ERROR] pattern is invalid, input=[%s]\n",
__func__, cp);
goto error;
}
pattern[pos] = hex;
mask_pos = pos / 8;
if (bit_mask)
bit_mask[mask_pos] |= 1 << (pos % 8);
}
pos++;
}
(*pattern_len) = pos;
return _TRUE;
error:
return _FALSE;
}
void rtw_wow_pattern_sw_reset(_adapter *adapter)
{
int i;
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(adapter);
if (pwrctrlpriv->default_patterns_en == _TRUE)
pwrctrlpriv->wowlan_pattern_idx = DEFAULT_PATTERN_NUM;
else
pwrctrlpriv->wowlan_pattern_idx = 0;
for (i = 0 ; i < MAX_WKFM_CAM_NUM; i++) {
_rtw_memset(pwrctrlpriv->patterns[i].content, '\0', sizeof(pwrctrlpriv->patterns[i].content));
_rtw_memset(pwrctrlpriv->patterns[i].mask, '\0', sizeof(pwrctrlpriv->patterns[i].mask));
pwrctrlpriv->patterns[i].len = 0;
}
}
u8 rtw_set_default_pattern(_adapter *adapter)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u8 index = 0;
u8 multicast_addr[3] = {0x01, 0x00, 0x5e};
u8 multicast_ip[4] = {0xe0, 0x28, 0x28, 0x2a};
u8 unicast_mask[5] = {0x3f, 0x70, 0x80, 0xc0, 0x03};
u8 icmpv6_mask[7] = {0x00, 0x70, 0x10, 0x00, 0xc0, 0xc0, 0x3f};
u8 multicast_mask[5] = {0x07, 0x70, 0x80, 0xc0, 0x03};
u8 ip_protocol[3] = {0x08, 0x00, 0x45};
u8 ipv6_protocol[3] = {0x86, 0xdd, 0x60};
u8 *target = NULL;
if (pwrpriv->default_patterns_en == _FALSE)
return 0;
for (index = 0 ; index < DEFAULT_PATTERN_NUM ; index++) {
_rtw_memset(pwrpriv->patterns[index].content, 0,
sizeof(pwrpriv->patterns[index].content));
_rtw_memset(pwrpriv->patterns[index].mask, 0,
sizeof(pwrpriv->patterns[index].mask));
pwrpriv->patterns[index].len = 0;
}
/*TCP/ICMP unicast*/
for (index = 0 ; index < DEFAULT_PATTERN_NUM ; index++) {
switch (index) {
case 0:
target = pwrpriv->patterns[index].content;
_rtw_memcpy(target, adapter_mac_addr(adapter),
ETH_ALEN);
target += ETH_TYPE_OFFSET;
_rtw_memcpy(target, &ip_protocol,
sizeof(ip_protocol));
/* TCP */
target += (PROTOCOL_OFFSET - ETH_TYPE_OFFSET);
_rtw_memset(target, 0x06, 1);
target += (IP_OFFSET - PROTOCOL_OFFSET);
_rtw_memcpy(target, pmlmeinfo->ip_addr,
RTW_IP_ADDR_LEN);
_rtw_memcpy(pwrpriv->patterns[index].mask,
&unicast_mask, sizeof(unicast_mask));
pwrpriv->patterns[index].len =
IP_OFFSET + RTW_IP_ADDR_LEN;
break;
case 1:
target = pwrpriv->patterns[index].content;
_rtw_memcpy(target, adapter_mac_addr(adapter),
ETH_ALEN);
target += ETH_TYPE_OFFSET;
_rtw_memcpy(target, &ip_protocol, sizeof(ip_protocol));
/* ICMP */
target += (PROTOCOL_OFFSET - ETH_TYPE_OFFSET);
_rtw_memset(target, 0x01, 1);
target += (IP_OFFSET - PROTOCOL_OFFSET);
_rtw_memcpy(target, pmlmeinfo->ip_addr,
RTW_IP_ADDR_LEN);
_rtw_memcpy(pwrpriv->patterns[index].mask,
&unicast_mask, sizeof(unicast_mask));
pwrpriv->patterns[index].len =
IP_OFFSET + RTW_IP_ADDR_LEN;
break;
#ifdef CONFIG_IPV6
case 2:
if (pwrpriv->wowlan_ns_offload_en == _TRUE) {
target = pwrpriv->patterns[index].content;
target += ETH_TYPE_OFFSET;
_rtw_memcpy(target, &ipv6_protocol,
sizeof(ipv6_protocol));
/* ICMPv6 */
target += (IPv6_PROTOCOL_OFFSET -
ETH_TYPE_OFFSET);
_rtw_memset(target, 0x3a, 1);
target += (IPv6_OFFSET - IPv6_PROTOCOL_OFFSET);
_rtw_memcpy(target, pmlmeinfo->ip6_addr,
RTW_IPv6_ADDR_LEN);
_rtw_memcpy(pwrpriv->patterns[index].mask,
&icmpv6_mask, sizeof(icmpv6_mask));
pwrpriv->patterns[index].len =
IPv6_OFFSET + RTW_IPv6_ADDR_LEN;
}
break;
#endif /*CONFIG_IPV6*/
case 3:
target = pwrpriv->patterns[index].content;
_rtw_memcpy(target, &multicast_addr,
sizeof(multicast_addr));
target += ETH_TYPE_OFFSET;
_rtw_memcpy(target, &ip_protocol, sizeof(ip_protocol));
/* UDP */
target += (PROTOCOL_OFFSET - ETH_TYPE_OFFSET);
_rtw_memset(target, 0x11, 1);
target += (IP_OFFSET - PROTOCOL_OFFSET);
_rtw_memcpy(target, &multicast_ip,
sizeof(multicast_ip));
_rtw_memcpy(pwrpriv->patterns[index].mask,
&multicast_mask, sizeof(multicast_mask));
pwrpriv->patterns[index].len =
IP_OFFSET + sizeof(multicast_ip);
break;
default:
break;
}
}
return index;
}
void rtw_dump_priv_pattern(_adapter *adapter, u8 idx)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
char str_1[128];
char *p_str;
u8 val8 = 0;
int i = 0, j = 0, len = 0, max_len = 0;
RTW_INFO("=========[%d]========\n", idx);
RTW_INFO(">>>priv_pattern_content:\n");
p_str = str_1;
max_len = sizeof(str_1);
for (i = 0 ; i < MAX_WKFM_PATTERN_SIZE / 8 ; i++) {
_rtw_memset(p_str, 0, max_len);
len = 0;
for (j = 0 ; j < 8 ; j++) {
val8 = pwrctl->patterns[idx].content[i * 8 + j];
len += snprintf(p_str + len, max_len - len,
"%02x ", val8);
}
RTW_INFO("%s\n", p_str);
}
RTW_INFO(">>>priv_pattern_mask:\n");
for (i = 0 ; i < MAX_WKFM_SIZE / 8 ; i++) {
_rtw_memset(p_str, 0, max_len);
len = 0;
for (j = 0 ; j < 8 ; j++) {
val8 = pwrctl->patterns[idx].mask[i * 8 + j];
len += snprintf(p_str + len, max_len - len,
"%02x ", val8);
}
RTW_INFO("%s\n", p_str);
}
RTW_INFO(">>>priv_pattern_len:\n");
RTW_INFO("%s: len: %d\n", __func__, pwrctl->patterns[idx].len);
}
void rtw_wow_pattern_sw_dump(_adapter *adapter)
{
int i;
RTW_INFO("********[RTK priv-patterns]*********\n");
for (i = 0 ; i < MAX_WKFM_CAM_NUM; i++)
rtw_dump_priv_pattern(adapter, i);
}
void rtw_get_sec_iv(PADAPTER padapter, u8 *pcur_dot11txpn, u8 *StaAddr)
{
struct sta_info *psta;
struct security_priv *psecpriv = &padapter->securitypriv;
_rtw_memset(pcur_dot11txpn, 0, 8);
if (NULL == StaAddr)
return;
psta = rtw_get_stainfo(&padapter->stapriv, StaAddr);
RTW_INFO("%s(): StaAddr: %02x %02x %02x %02x %02x %02x\n",
__func__, StaAddr[0], StaAddr[1], StaAddr[2],
StaAddr[3], StaAddr[4], StaAddr[5]);
if (psta) {
if (psecpriv->dot11PrivacyAlgrthm == _AES_)
AES_IV(pcur_dot11txpn, psta->dot11txpn, 0);
else if (psecpriv->dot11PrivacyAlgrthm == _TKIP_)
TKIP_IV(pcur_dot11txpn, psta->dot11txpn, 0);
RTW_INFO("%s(): CurrentIV: %02x %02x %02x %02x %02x %02x %02x %02x\n"
, __func__, pcur_dot11txpn[0], pcur_dot11txpn[1],
pcur_dot11txpn[2], pcur_dot11txpn[3], pcur_dot11txpn[4],
pcur_dot11txpn[5], pcur_dot11txpn[6], pcur_dot11txpn[7]);
}
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_PNO_SUPPORT
#define CSCAN_TLV_TYPE_SSID_IE 'S'
#define CIPHER_IE "key_mgmt="
#define CIPHER_NONE "NONE"
#define CIPHER_WPA_PSK "WPA-PSK"
#define CIPHER_WPA_EAP "WPA-EAP IEEE8021X"
/*
* SSIDs list parsing from cscan tlv list
*/
int rtw_parse_ssid_list_tlv(char **list_str, pno_ssid_t *ssid,
int max, int *bytes_left)
{
char *str;
int idx = 0;
if ((list_str == NULL) || (*list_str == NULL) || (*bytes_left < 0)) {
RTW_INFO("%s error paramters\n", __func__);
return -1;
}
str = *list_str;
while (*bytes_left > 0) {
if (str[0] != CSCAN_TLV_TYPE_SSID_IE) {
*list_str = str;
RTW_INFO("nssid=%d left_parse=%d %d\n", idx, *bytes_left, str[0]);
return idx;
}
/* Get proper CSCAN_TLV_TYPE_SSID_IE */
*bytes_left -= 1;
str += 1;
if (str[0] == 0) {
/* Broadcast SSID */
ssid[idx].SSID_len = 0;
memset((char *)ssid[idx].SSID, 0x0, WLAN_SSID_MAXLEN);
*bytes_left -= 1;
str += 1;
RTW_INFO("BROADCAST SCAN left=%d\n", *bytes_left);
} else if (str[0] <= WLAN_SSID_MAXLEN) {
/* Get proper SSID size */
ssid[idx].SSID_len = str[0];
*bytes_left -= 1;
str += 1;
/* Get SSID */
if (ssid[idx].SSID_len > *bytes_left) {
RTW_INFO("%s out of memory range len=%d but left=%d\n",
__func__, ssid[idx].SSID_len, *bytes_left);
return -1;
}
memcpy((char *)ssid[idx].SSID, str, ssid[idx].SSID_len);
*bytes_left -= ssid[idx].SSID_len;
str += ssid[idx].SSID_len;
RTW_INFO("%s :size=%d left=%d\n",
(char *)ssid[idx].SSID, ssid[idx].SSID_len, *bytes_left);
} else {
RTW_INFO("### SSID size more that %d\n", str[0]);
return -1;
}
if (idx++ > max) {
RTW_INFO("%s number of SSIDs more that %d\n", __func__, idx);
return -1;
}
}
*list_str = str;
return idx;
}
int rtw_parse_cipher_list(struct pno_nlo_info *nlo_info, char *list_str)
{
char *pch, *pnext, *pend;
u8 key_len = 0, index = 0;
pch = list_str;
if (nlo_info == NULL || list_str == NULL) {
RTW_INFO("%s error paramters\n", __func__);
return -1;
}
while (strlen(pch) != 0) {
pnext = strstr(pch, "key_mgmt=");
if (pnext != NULL) {
pch = pnext + strlen(CIPHER_IE);
pend = strstr(pch, "}");
if (strncmp(pch, CIPHER_NONE,
strlen(CIPHER_NONE)) == 0)
nlo_info->ssid_cipher_info[index] = 0x00;
else if (strncmp(pch, CIPHER_WPA_PSK,
strlen(CIPHER_WPA_PSK)) == 0)
nlo_info->ssid_cipher_info[index] = 0x66;
else if (strncmp(pch, CIPHER_WPA_EAP,
strlen(CIPHER_WPA_EAP)) == 0)
nlo_info->ssid_cipher_info[index] = 0x01;
index++;
pch = pend + 1;
} else
break;
}
return 0;
}
int rtw_dev_nlo_info_set(struct pno_nlo_info *nlo_info, pno_ssid_t *ssid,
int num, int pno_time, int pno_repeat, int pno_freq_expo_max)
{
int i = 0;
struct file *fp;
mm_segment_t fs;
loff_t pos = 0;
u8 *source = NULL;
long len = 0;
RTW_INFO("+%s+\n", __func__);
nlo_info->fast_scan_period = pno_time;
nlo_info->ssid_num = num & BIT_LEN_MASK_32(8);
nlo_info->hidden_ssid_num = num & BIT_LEN_MASK_32(8);
nlo_info->slow_scan_period = (pno_time * 2);
nlo_info->fast_scan_iterations = 5;
if (nlo_info->hidden_ssid_num > 8)
nlo_info->hidden_ssid_num = 8;
/* TODO: channel list and probe index is all empty. */
for (i = 0 ; i < num ; i++) {
nlo_info->ssid_length[i]
= ssid[i].SSID_len;
}
/* cipher array */
fp = filp_open("/data/misc/wifi/wpa_supplicant.conf", O_RDONLY, 0644);
if (IS_ERR(fp)) {
RTW_INFO("Error, wpa_supplicant.conf doesn't exist.\n");
RTW_INFO("Error, cipher array using default value.\n");
return 0;
}
len = i_size_read(fp->f_path.dentry->d_inode);
if (len < 0 || len > 2048) {
RTW_INFO("Error, file size is bigger than 2048.\n");
RTW_INFO("Error, cipher array using default value.\n");
return 0;
}
fs = get_fs();
set_fs(KERNEL_DS);
source = rtw_zmalloc(2048);
if (source != NULL) {
len = vfs_read(fp, source, len, &pos);
rtw_parse_cipher_list(nlo_info, source);
rtw_mfree(source, 2048);
}
set_fs(fs);
filp_close(fp, NULL);
RTW_INFO("-%s-\n", __func__);
return 0;
}
int rtw_dev_ssid_list_set(struct pno_ssid_list *pno_ssid_list,
pno_ssid_t *ssid, u8 num)
{
int i = 0;
if (num > MAX_PNO_LIST_COUNT)
num = MAX_PNO_LIST_COUNT;
for (i = 0 ; i < num ; i++) {
_rtw_memcpy(&pno_ssid_list->node[i].SSID,
ssid[i].SSID, ssid[i].SSID_len);
pno_ssid_list->node[i].SSID_len = ssid[i].SSID_len;
}
return 0;
}
int rtw_dev_scan_info_set(_adapter *padapter, pno_ssid_t *ssid,
unsigned char ch, unsigned char ch_offset, unsigned short bw_mode)
{
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
struct pno_scan_info *scan_info = pwrctl->pscan_info;
u8 band = ch <= 14 ? BAND_ON_2_4G : BAND_ON_5G;
int i;
scan_info->channel_num = MAX_SCAN_LIST_COUNT;
scan_info->orig_ch = ch;
scan_info->orig_bw = bw_mode;
scan_info->orig_40_offset = ch_offset;
for (i = 0 ; i < scan_info->channel_num ; i++) {
if (i < 11)
scan_info->ssid_channel_info[i].active = 1;
else
scan_info->ssid_channel_info[i].active = 0;
scan_info->ssid_channel_info[i].timeout = 100;
scan_info->ssid_channel_info[i].tx_power =
phy_get_tx_power_index_ex(padapter, 0, CCK, MGN_1M, bw_mode, band, i + 1, i + 1);
scan_info->ssid_channel_info[i].channel = i + 1;
}
RTW_INFO("%s, channel_num: %d, orig_ch: %d, orig_bw: %d orig_40_offset: %d\n",
__func__, scan_info->channel_num, scan_info->orig_ch,
scan_info->orig_bw, scan_info->orig_40_offset);
return 0;
}
int rtw_dev_pno_set(struct net_device *net, pno_ssid_t *ssid, int num,
int pno_time, int pno_repeat, int pno_freq_expo_max)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
int ret = -1;
if (num == 0) {
RTW_INFO("%s, nssid is zero, no need to setup pno ssid list\n", __func__);
return 0;
}
if (pwrctl == NULL) {
RTW_INFO("%s, ERROR: pwrctl is NULL\n", __func__);
return -1;
} else {
pwrctl->pnlo_info =
(pno_nlo_info_t *)rtw_zmalloc(sizeof(pno_nlo_info_t));
pwrctl->pno_ssid_list =
(pno_ssid_list_t *)rtw_zmalloc(sizeof(pno_ssid_list_t));
pwrctl->pscan_info =
(pno_scan_info_t *)rtw_zmalloc(sizeof(pno_scan_info_t));
}
if (pwrctl->pnlo_info == NULL ||
pwrctl->pscan_info == NULL ||
pwrctl->pno_ssid_list == NULL) {
RTW_INFO("%s, ERROR: alloc nlo_info, ssid_list, scan_info fail\n", __func__);
goto failing;
}
pwrctl->wowlan_in_resume = _FALSE;
pwrctl->pno_inited = _TRUE;
/* NLO Info */
ret = rtw_dev_nlo_info_set(pwrctl->pnlo_info, ssid, num,
pno_time, pno_repeat, pno_freq_expo_max);
/* SSID Info */
ret = rtw_dev_ssid_list_set(pwrctl->pno_ssid_list, ssid, num);
/* SCAN Info */
ret = rtw_dev_scan_info_set(padapter, ssid, pmlmeext->cur_channel,
pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode);
RTW_INFO("+%s num: %d, pno_time: %d, pno_repeat:%d, pno_freq_expo_max:%d+\n",
__func__, num, pno_time, pno_repeat, pno_freq_expo_max);
return 0;
failing:
if (pwrctl->pnlo_info) {
rtw_mfree((u8 *)pwrctl->pnlo_info, sizeof(pno_nlo_info_t));
pwrctl->pnlo_info = NULL;
}
if (pwrctl->pno_ssid_list) {
rtw_mfree((u8 *)pwrctl->pno_ssid_list, sizeof(pno_ssid_list_t));
pwrctl->pno_ssid_list = NULL;
}
if (pwrctl->pscan_info) {
rtw_mfree((u8 *)pwrctl->pscan_info, sizeof(pno_scan_info_t));
pwrctl->pscan_info = NULL;
}
return -1;
}
#ifdef CONFIG_PNO_SET_DEBUG
void rtw_dev_pno_debug(struct net_device *net)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
int i = 0, j = 0;
RTW_INFO("*******NLO_INFO********\n");
RTW_INFO("ssid_num: %d\n", pwrctl->pnlo_info->ssid_num);
RTW_INFO("fast_scan_iterations: %d\n",
pwrctl->pnlo_info->fast_scan_iterations);
RTW_INFO("fast_scan_period: %d\n", pwrctl->pnlo_info->fast_scan_period);
RTW_INFO("slow_scan_period: %d\n", pwrctl->pnlo_info->slow_scan_period);
for (i = 0 ; i < MAX_PNO_LIST_COUNT ; i++) {
RTW_INFO("%d SSID (%s) length (%d) cipher(%x) channel(%d)\n",
i, pwrctl->pno_ssid_list->node[i].SSID, pwrctl->pnlo_info->ssid_length[i],
pwrctl->pnlo_info->ssid_cipher_info[i], pwrctl->pnlo_info->ssid_channel_info[i]);
}
RTW_INFO("******SCAN_INFO******\n");
RTW_INFO("ch_num: %d\n", pwrctl->pscan_info->channel_num);
RTW_INFO("orig_ch: %d\n", pwrctl->pscan_info->orig_ch);
RTW_INFO("orig bw: %d\n", pwrctl->pscan_info->orig_bw);
RTW_INFO("orig 40 offset: %d\n", pwrctl->pscan_info->orig_40_offset);
for (i = 0 ; i < MAX_SCAN_LIST_COUNT ; i++) {
RTW_INFO("[%02d] avtive:%d, timeout:%d, tx_power:%d, ch:%02d\n",
i, pwrctl->pscan_info->ssid_channel_info[i].active,
pwrctl->pscan_info->ssid_channel_info[i].timeout,
pwrctl->pscan_info->ssid_channel_info[i].tx_power,
pwrctl->pscan_info->ssid_channel_info[i].channel);
}
RTW_INFO("*****************\n");
}
#endif /* CONFIG_PNO_SET_DEBUG */
#endif /* CONFIG_PNO_SUPPORT */
inline void rtw_collect_bcn_info(_adapter *adapter)
{
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
if (!is_client_associated_to_ap(adapter))
return;
pmlmeext->cur_bcn_cnt = pmlmeext->bcn_cnt - pmlmeext->last_bcn_cnt;
pmlmeext->last_bcn_cnt = pmlmeext->bcn_cnt;
/*TODO get offset of bcn's timestamp*/
/*pmlmeext->bcn_timestamp;*/
}